Structured diagonal Gauss-Newton method for nonlinear least squares

被引:5
|
作者
Danmalam, Kamaluddeen Umar [1 ,2 ]
Mohammad, Hassan [2 ,3 ]
Waziri, Mohammed Yusuf [2 ,3 ]
机构
[1] Fed Polytech, Dept Math & Stat, Sch Sci & Technol, Kaura Namoda, Zamfara, Nigeria
[2] Bayero Univ, Numer Optimizat Res Grp, Kano, Nigeria
[3] Bayero Univ, Fac Phys Sci, Dept Math Sci, Kano 700241, Nigeria
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 02期
关键词
Nonlinear least-squares problems; Structured secant condition; Derivative-free line search; Global convergence; Rate of convergence; LINE SEARCH TECHNIQUE; MINIMIZATION;
D O I
10.1007/s40314-022-01774-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proposes a structured diagonal Gauss-Newton algorithm for solving zero residue nonlinear least-squares problems. The matrix corresponding to the Gauss-Newton direction is approximated with a diagonal matrix that satisfies the structured secant condition. Using a derivative-free Armijo-type line search with some appropriate conditions, we prove that the proposed algorithm converges globally. Furthermore, the algorithm achieved R-linear convergence rate for zero residue problems. Numerical result shows that the algorithm is competitive with the existing algorithms in the literature.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Structured diagonal Gauss–Newton method for nonlinear least squares
    Kamaluddeen Umar Danmalam
    Hassan Mohammad
    Mohammed Yusuf Waziri
    Computational and Applied Mathematics, 2022, 41
  • [2] GLOBAL CONVERGENCE OF A NEW HYBRID GAUSS-NEWTON STRUCTURED BFGS METHOD FOR NONLINEAR LEAST SQUARES PROBLEMS
    Zhou, Weijun
    Chen, Xiaojun
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2422 - 2441
  • [3] Decentralized Gauss-Newton method for nonlinear least squares on wide area network
    Liu, Lanchao
    Ling, Qing
    Han, Zhu
    2ND RADIO AND ANTENNA DAYS OF THE INDIAN OCEAN (RADIO 2014), 2014, 67
  • [4] A MEMORYLESS AUGMENTED GAUSS-NEWTON METHOD FOR NONLINEAR LEAST-SQUARES PROBLEMS
    DENNIS, JE
    SHENG, SB
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1988, 6 (04): : 355 - 374
  • [5] Approximate Gauss-Newton methods for nonlinear least squares problems
    Gratton, S.
    Lawless, A. S.
    Nichols, N. K.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) : 106 - 132
  • [6] A Gauss-Newton method for mixed least squares-total least squares problems
    Liu, Qiaohua
    Wang, Shan
    Wei, Yimin
    CALCOLO, 2024, 61 (01)
  • [7] ON CONVERGENCE OF A TRUNCATED GAUSS-NEWTON METHOD FOR SOLVING UNDERDETERMINED NONLINEAR LEAST SQUARES PROBLEMS
    Bao, Ji-Feng
    Guu, Sy-Ming
    Wang, Jinhua
    Hu, Yaohua
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (12) : 2235 - 2246
  • [8] LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD
    Kim, Seung Soo
    Lee, Yong Hun
    Oh, Eun Jung
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 47 - 57
  • [9] Solution of nonlinear least squares problems by approximate Gauss-Newton methods
    Vaarmann, O
    MODELLING AND SIMULATION OF BUSINESS SYSTEMS, 2003, : 43 - 46
  • [10] A geometric Gauss-Newton method for least squares inverse eigenvalue problems
    Yao, Teng-Teng
    Bai, Zheng-Jian
    Jin, Xiao-Qing
    Zhao, Zhi
    BIT NUMERICAL MATHEMATICS, 2020, 60 (03) : 825 - 852