Cayley graphs and G-graphs: Some applications

被引:6
作者
Bretto, Alain [1 ]
Faisant, Alain [2 ]
机构
[1] Univ Caen, GREYC CNRS UMR6072, F-14032 Caen, France
[2] Univ St Etienne, LAMUSE, F-42023 St Etienne 2, France
关键词
Computational group theory; Graph representation of a group; Cayley graphs; G-graphs; LINE-GRAPHS;
D O I
10.1016/j.jsc.2011.08.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces some relations about Cayley graphs and G-graphs. We present a sufficient condition to recognize when a G-graph is a Cayley graph. The relation between G-graphs and Cayley graphs allows us to consider some applications to the hamiltonicity of Cayley graphs. In the last section we illustrate our results by showing that some new classes of Cayley graphs are hamiltonian. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1403 / 1412
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 2001, ALGEBRAIC GRAPH THEO, DOI DOI 10.1007/978-1-4613-0163-9
[2]  
Berge Claude, 1989, Combinatorics of finite sets
[3]  
Bretto A., 2005, Math. Slovaca, V55, P1
[4]  
Bretto A., 2004, ADV IMAGING ELECT PH, V131
[5]  
Bretto A, 2008, LECT NOTES ARTIF INT, V5081, P139
[6]   G-graphs:: A new representation of groups [J].
Bretto, Alain ;
Faisant, Alain ;
Gillibert, Luc .
JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (05) :549-560
[7]  
Cayley A, 1889, American Journal of Mathematics, V11, P139
[8]  
Cayley A., 1878, Amer. J. Math, V1, P174
[9]   CONNECTIVITY OF LINE-GRAPHS [J].
CHARTRAND, G ;
STEWART, MJ .
MATHEMATISCHE ANNALEN, 1969, 182 (03) :170-+
[10]  
COOPERMAN G, 1991, LECT NOTES COMPUT SC, V508, P367