Differential calculus over double Lie algebroids

被引:0
作者
Chemla, Sophie [1 ]
机构
[1] Sorbonne Univ, Univ Paris Diderot, CNRS, Inst Math Jussieu Paris Rive Gauche,IMJ PRG, F-75005 Paris, France
关键词
Lie Rinehart algebras; Lie algebroids; double Lie algebroids; double Poisson algebras; Karoubi de Rham complex; POISSON STRUCTURES; COHOMOLOGY;
D O I
10.4171/JNCG/364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
M. Van den Bergh [20] defined the notion of a double Lie algebroid and showed that a double quasi-Poisson algebra gives rise to a double Lie algebroid. We give new examples of double Lie algebroids and develop a differential calculus in that context. We recover the non commutative Karoubi de Rham complex [7, 9] and the double Poisson Lichnerowicz cohomology [16] as particular cases of our construction.
引用
收藏
页码:191 / 222
页数:32
相关论文
共 21 条
[1]   Quasi-Poisson manifolds [J].
Alekseev, A ;
Kosmann-Schwarzbach, Y ;
Meinrenken, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01) :3-29
[2]   Quantization and Dynamisation of Trace-Poisson Brackets [J].
Avan, Jean ;
Ragoucy, Eric ;
Rubtsov, Vladimir .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) :263-287
[3]   Noncommutative Poisson structures, derived representation schemes and Calabi-Yau algebras [J].
Berest, Yuri ;
Chen, Xiaojun ;
Eshmatov, Farkhod ;
Ramadoss, Ajay .
MATHEMATICAL ASPECTS OF QUANTIZATION, 2012, 583 :219-+
[4]  
Bursztyn H, 2005, PROG MATH, V232, P1
[5]  
Crawley-Boevey W., 2005, ARXVMATH0506268
[6]   Noncommutative geometry and quiver algebras [J].
Crawley-Boevey, William ;
Etingof, Pavel ;
Ginzburg, Victor .
ADVANCES IN MATHEMATICS, 2007, 209 (01) :274-336
[7]   Poisson structures on moduli spaces of representations [J].
Crawley-Boevey, William .
JOURNAL OF ALGEBRA, 2011, 325 (01) :205-215
[8]   Double Poisson structures on finite dimensional semi-simple algebras [J].
de Weyer, Geert Van .
ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (05) :437-460
[9]   Transverse measures, the modular class and a cohomology pairing for Lie algebroids [J].
Evens, S ;
Lu, JH ;
Weinstein, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200) :417-436
[10]  
Karoubi M, 1987, ASTERISQUE, V149, P147