On ranks of matrices associated with trees

被引:10
作者
Chen, GT [1 ]
Hall, FJ
Li, ZS
Wei, B
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
sign pattern matrix; symmetric tree sign pattern; minimal rank; symmetric minimal rank;
D O I
10.1007/s00373-002-0522-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sign pattern matrix is a matrix whose entries are from the set {+, -0}. The purpose of this paper is to obtain bounds on the minimum rank of any symmetric sign pattern matrix A whose graph is a free T (possibly with loops). In the special case when A is nonnegative with positive diagonal and the graph of A is "star-like", the exact value of the minimum rank of A is obtained. As a result, it is shown that the gap between the symmetric minimal and maximal ranks can be arbitrarily large for a symmetric tree sign pattern A.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 16 条
[1]   A COUNTEREXAMPLE TO THE RANK-COLORING CONJECTURE [J].
ALON, N ;
SEYMOUR, PD .
JOURNAL OF GRAPH THEORY, 1989, 13 (04) :523-525
[2]  
BEVIS J, 1994, CONGRESSUS NUMERANTI, V100, P33
[3]  
Bevis JH, 1997, LINEAR ALGEBRA APPL, V265, P55
[4]  
BEVIS JH, 1995, J COMBIN MATH COMBIN, V18, P109
[5]  
Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
[6]  
Ellingham M.N., 1993, Australasian Journal of Combinatorics, V8, P247
[7]  
Hall F., 2001, Numer. Math., V10, P226
[8]   Symmetric sign pattern matrices that require unique inertia [J].
Hall, FJ ;
Li, ZS ;
Wang, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 338 (338) :153-169
[9]  
HEDETNIEMI ST, 1989, J COMBIN MATH COMBIN, V6, P173
[10]  
JOHNSON CR, 1999, LINEAR MULTILINEAR A, V46, P139