Considering spectral variability for optical material abundance estimation

被引:10
作者
Krippner, Wolfgang [1 ]
Bauer, Sebastian [1 ]
Leon, Fernando Puente [1 ]
机构
[1] KIT, IIIT, Karlsruhe, Germany
关键词
Hyperspectral image; optical computing; optical measurement; spectral filtering;
D O I
10.1515/teme-2017-0053
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Hyperspectral images include information enabling the determination of material abundances. Due to the fact that the acquisition of hyperspectral images is time consuming and the processing of these images is computationally costly, we propose an optical approach using spectral filters to retrieve the material abundances. The application of a spectral filter leads to an intensity image encoding estimates for the abundances of a specific material. The acquisition and processing of hyperspectral images becomes superfluous. However, the determination of spectral filters offers a large degree of freedom. In this work, we focus on methods for designing spectral filters incorporating spectral variability. Particularly, we account for reducing the negative effects of spectral variability on the accuracy of estimates for material abundances. According to experimental evaluations, we conclude that including spectral variability into the calculation of spectral filters leads to more accurate abundance estimates when mixed spectra of the considered material mixtures sufficiently fulfill the linear mixing model.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 12 条
[1]   Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery [J].
Altmann, Yoann ;
Halimi, Abderrahim ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) :3017-3025
[2]  
[Anonymous], P SPIE
[3]  
[Anonymous], IEEE J SELECTED TOPI
[4]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[5]  
Dobigeon N, 2016, DATA HANDL SCI TECHN, V30, P185, DOI 10.1016/B978-0-444-63638-6.00006-1
[6]  
Du KL., 2014, Neural Networks and Statistical Learning, DOI DOI 10.1007/978-1-4471-5571-3
[7]  
HOU HS, 1987, IEEE T ACOUST SPEECH, V35, P1455
[8]   Spectral unmixing [J].
Keshava, N ;
Mustard, JF .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) :44-57
[9]   Optical determination of material abundances in mixtures [J].
Krippner, Wolfgang ;
Bauer, Sebastian ;
Leon, Fernando Puente .
TM-TECHNISCHES MESSEN, 2017, 84 (03) :207-215
[10]  
Nascimento J.M.P., 2005, IEEE Trans. Geoscience and Remote Sensing, V43, P898