Sensitivity analysis for parametric generalized implicit quasi-variational-like inclusions involving P-η-accretive mappings

被引:14
作者
Kazmi, K. R. [1 ]
Khan, F. A. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
parametric generalized implicit quasi-variational-like inclusion; sensitivity analysis; P-eta-accretive mapping; P-eta-proximal-point mapping; relaxed mixed Lipschitz mapping; relaxed mixed accretive mapping; generalized mixed pseudocontractive mapping; mixed Lipschitz continuous;
D O I
10.1016/j.jmaa.2007.01.115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using proximal-point mapping technique of P-eta-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-eta-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48]. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1198 / 1210
页数:13
相关论文
共 28 条
[21]   Sensitivity analysis for parametric completely generalized nonlinear implicit quasivariational inclusions [J].
Liu, Z ;
Debnath, L ;
Kang, SM ;
Ume, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :142-154
[22]   SENSITIVITY ANALYSIS OF GENERALIZED VARIATIONAL-INEQUALITIES [J].
MUKHERJEE, RN ;
VERMA, HL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (02) :299-304
[23]   MULTI-VALUED CONTRACTION MAPPINGS [J].
NADLER, SB .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (02) :475-&
[24]   Sensitivity analysis for quasi-variational inclusions [J].
Noor, MA ;
Noor, KI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) :290-299
[25]   Sensitivity analysis framework for general quasi-variational inclusions [J].
Noor, MA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (8-9) :1175-1181
[26]   Parametric generalized mixed variational inequalities [J].
Park, JY ;
Jeong, JU .
APPLIED MATHEMATICS LETTERS, 2004, 17 (01) :43-48
[27]  
ROBINSON SM, 1995, VARIATIONAL INEQUALITIES AND NETWORK EQUILIBRIUM PROBLEMS, P257
[28]   HOLDER CONTINUITY OF SOLUTIONS TO A PARAMETRIC VARIATIONAL INEQUALITY [J].
YEN, ND .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (03) :245-255