Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions

被引:2
|
作者
Lahmy, Reyhaneh [1 ]
Bolyukh, Vladimir F. [2 ,3 ]
Castilla, Sergio Mora [5 ]
Laurent, Louise C. [5 ]
Katkov, Igor I. [2 ,4 ]
Itkin-Ansari, Pamela [1 ,6 ]
机构
[1] Sanford Burnham Med Res Inst, Dev Aging & Regenerat Program, La Jolla, CA 92037 USA
[2] CELLTRONIX, San Diego, CA 92126 USA
[3] Natl Tech Univ KhPI, Kharkov, Ukraine
[4] Belgorod State Univ, Inst Engn Technol & Nat Sci, Amorphous State Lab, Belgorod, Russia
[5] Univ Calif San Diego, Dept Reprod Med, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
关键词
Cryopreservation; Vitrification; Osmotic tolerance; Toxicity; Diabetes; Insulin progenitors; Macroencapsulation; Beta-cells; DEVICE; CRYOPRESERVATION; MATURE;
D O I
10.1016/j.cryobiol.2015.03.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional 'slow freezing' methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS + 0.5 M sucrose at 37 degrees C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:283 / 286
页数:4
相关论文
共 50 条
  • [41] Cryopreservation of Human Adipose Tissue-Derived Stem/Progenitor Cells Using the Silk Protein Sericin
    Miyamoto, Yoshitaka
    Oishi, Koichi
    Yukawa, Hiroshi
    Noguchi, Hirofumi
    Sasaki, Masahiro
    Iwata, Hisashi
    Hayashi, Shuji
    CELL TRANSPLANTATION, 2012, 21 (2-3) : 617 - 622
  • [42] Platelet-Derived Mitochondria Display Embryonic Stem Cell Markers and Improve Pancreatic Islet β-cell Function in Humans
    Zhao, Yong
    Jiang, Zhaoshun
    Delgado, Elias
    Li, Heng
    Zhou, Huimin
    Hu, Wei
    Perez-Basterrechea, Marcos
    Janostakova, Anna
    Tan, Qidong
    Wang, Jing
    Mao, Mao
    Yin, Zhaohui
    Zhang, Ye
    Li, Ying
    Li, Quanhai
    Zhou, Jing
    Li, Yunxiang
    Martinez Revuelta, Eva
    Maria Garcia-Gala, Jose
    Wang, Honglan
    Perez-Lopez, Silvia
    Alvarez-Viejo, Maria
    Menendez, Edelmiro
    Moss, Thomas
    Guindi, Edward
    Otero, Jesus
    STEM CELLS TRANSLATIONAL MEDICINE, 2017, 6 (08) : 1684 - 1697
  • [43] Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice
    Bruin, Jennifer E.
    Saber, Nelly
    O'Dwyer, Shannon
    Fox, Jessica K.
    Mojibian, Majid
    Arora, Payal
    Rezania, Alireza
    Kieffer, Timothy J.
    DIABETES, 2016, 65 (05) : 1297 - 1309
  • [44] Navigating the Genomic Landscape of Human Adipose Stem Cell-Derived β-Cells
    Koduru, Srinivas, V
    Leberfinger, Ashley N.
    Ozbolat, Ibrahim T.
    Ravnic, Dino J.
    STEM CELLS AND DEVELOPMENT, 2021, 30 (23) : 1153 - 1170
  • [45] Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following
    Nyalwidhe, Julius O.
    Jurczyk, Agata
    Satish, Basanthi
    Redick, Sambra
    Qaisar, Natasha
    Trombly, Melanie I.
    Vangala, Pranitha
    Racicot, Riccardo
    Bortell, Rita
    Harlan, David M.
    Greiner, Dale L.
    Brehm, Michael A.
    Nadler, Jerry L.
    Wang, Jennifer P.
    MICROORGANISMS, 2020, 8 (02)
  • [46] Parthenogenetic embryonic stem cells derived from cryopreserved newborn mouse ovaries: a new approach to autologous stem cell therapy
    Xing, Fengying
    Fang, Zhenfu
    Qin, Bolin
    Li, Yao
    Hou, Jian
    Chen, Xuejin
    FERTILITY AND STERILITY, 2009, 91 (04) : 1238 - 1244
  • [47] Generation of Retinal Progenitor Cells from Human Induced Pluripotent Stem Cell-Derived Spherical Neural Mass
    Yun, Cheolmin
    Oh, Jaeryung
    Lee, Boram
    Lee, Ja-Myong
    Ariunaa, Togloom
    Huh, Kuhl
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2017, 14 (01) : 39 - 47
  • [48] Insulin-producing cells from human pancreatic islet-derived progenitor cells following transplantation in mice
    Zhang, Ying
    Ren, Zhenhua
    Zou, Chunlin
    Wang, Shuyan
    Luo, Bin
    Li, Fei
    Liu, Shuang
    Zhang, Yu Alex
    CELL BIOLOGY INTERNATIONAL, 2011, 35 (05) : 483 - 490
  • [49] Evaluation of hepatotoxicity of chemicals using hepatic progenitor and hepatocyte-like cells derived from mouse embryonic stem cells
    Kang, Seok-Jin
    Jeong, Sang-Hee
    Kim, Eun-Joo
    Cho, Joon-Hyoung
    Park, Young-Il
    Park, Sung-Won
    Shin, Hyo-Sook
    Son, Seong-Wan
    Kang, Hwan-Goo
    CELL BIOLOGY AND TOXICOLOGY, 2013, 29 (01) : 1 - 11
  • [50] Functional Signature of Human Islet-Derived Precursor Cells Compared to Bone Marrow-Derived Mesenchymal Stem Cells
    Limbert, Catarina
    Ebert, Regina
    Schilling, Tatjana
    Path, Gunter
    Benisch, Peggy
    Klein-Hitpass, Ludger
    Seufert, Jochen
    Jakob, Franz
    STEM CELLS AND DEVELOPMENT, 2010, 19 (05) : 679 - 691