A Noncentral and Non-Gaussian Probability Model for SAR Data

被引:0
|
作者
Cristea, Anca [1 ]
Doulgeris, Anthony P. [1 ]
Eltoft, Torbjorn [1 ]
机构
[1] Univ Tromso, Dept Phys & Technol, Earth Observat Lab, N-9037 Tromso, Norway
来源
关键词
Speckle; Compound statistical model; Inverse Gaussian; MAP filter;
D O I
10.1007/978-3-319-59129-2_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general compound statistical model for coherent imaging is developed and tested on single-channel Synthetic Aperture Radar (SAR) data. In this formulation, coherent scattering is taken into consideration and the texture is modeled using an Inverse Gaussian distribution. Parameter estimation is conducted via an Expectation Maximization (EM) scheme. A Maximum a Posteriori (MAP) speckle filter based on this model is also implemented. The filter shows good smoothing capabilities and preserves details in the selected scene, showing promise for target-detection applications.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [31] SAR SPECKLE PROPERTIES OF NON-GAUSSIAN HEIGHT ROUGH SURFACES
    Wu, Lingbing
    Chen, Kun-Shan
    Chiang, Cheng-Yen
    Yang, Ying
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1999 - 2002
  • [32] AUTOMATIC CLUSTERING OF MULTISPECTRAL DATA USING A NON-GAUSSIAN STATISTICAL MODEL
    Khan, Salman
    Doulgeris, Anthony P.
    Savastano, Salvatore
    Guida, Raffaella
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [33] SAR IMAGING FEATURES OF NON-GAUSSIAN HEIGHT SEA SURFACE
    Guo, Yuhua
    Liu, Xin
    Shi, Huifeng
    Jin, Shichao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7034 - 7037
  • [34] Application of non-Gaussian multidimensional autoregressive model for climate data prediction
    Ewa Broszkiewicz-Suwaj
    Agnieszka Wyłomańska
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13 : 236 - 247
  • [35] Quantifying model uncertainty for the observed non-Gaussian data by the Hellinger distance
    Zheng, Yayun
    Yang, Fang
    Duan, Jinqiao
    Kurths, Juergen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [36] Dynamics of non-Gaussian fluctuations in model A
    Schafer, Thomas
    Skokov, Vladimir
    PHYSICAL REVIEW D, 2022, 106 (01)
  • [37] A non-Gaussian model in polymeric network
    L. C. Malacarne
    R. S. Mendes
    E. K. Lenzi
    S. Picoli jr.
    J. P. Dal Molin
    The European Physical Journal E, 2006, 20 : 395 - 399
  • [38] A non-Gaussian model in polymeric network
    Malacarne, L. C.
    Mendes, R. S.
    Lenzi, E. K.
    Picoli, S., Jr.
    Dal Molin, J. P.
    EUROPEAN PHYSICAL JOURNAL E, 2006, 20 (04): : 395 - 399
  • [39] A non-Gaussian network alteration model
    Ernst, LJ
    Septanika, EG
    CONSTITUTIVE MODELS FOR RUBBER, 1999, : 169 - 180
  • [40] Application of non-Gaussian multidimensional autoregressive model for climate data prediction
    Broszkiewicz-Suwaj, Ewa
    Wylomanska, Agnieszka
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2021, 13 (2-3) : 236 - 247