A Noncentral and Non-Gaussian Probability Model for SAR Data

被引:0
|
作者
Cristea, Anca [1 ]
Doulgeris, Anthony P. [1 ]
Eltoft, Torbjorn [1 ]
机构
[1] Univ Tromso, Dept Phys & Technol, Earth Observat Lab, N-9037 Tromso, Norway
来源
关键词
Speckle; Compound statistical model; Inverse Gaussian; MAP filter;
D O I
10.1007/978-3-319-59129-2_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general compound statistical model for coherent imaging is developed and tested on single-channel Synthetic Aperture Radar (SAR) data. In this formulation, coherent scattering is taken into consideration and the texture is modeled using an Inverse Gaussian distribution. Parameter estimation is conducted via an Expectation Maximization (EM) scheme. A Maximum a Posteriori (MAP) speckle filter based on this model is also implemented. The filter shows good smoothing capabilities and preserves details in the selected scene, showing promise for target-detection applications.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [21] Fitting non-Gaussian persistent data
    Palma, Wilfredo
    Zevallos, Mauricio
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2011, 27 (01) : 23 - 36
  • [22] Cluster non-Gaussian functional data
    Zhong, Qingzhi
    Lin, Huazhen
    Li, Yi
    BIOMETRICS, 2021, 77 (03) : 852 - 865
  • [23] Analysis of non-Gaussian POLSAR data
    Doulgeris, Anthony
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 160 - 163
  • [24] Target detection in infrared and SAR terrain images using a non-Gaussian stochastic model
    Chapple, PB
    Bertilone, DC
    Caprari, RS
    Angeli, S
    Newsam, GN
    TARGETS AND BACKGROUNDS: CHARACTERIZATION AND REPRESENTATION V, 1999, 3699 : 122 - 132
  • [25] A non-stationary factor copula model for non-Gaussian spatial data
    Mondal, Sagnik
    Krupskii, Pavel
    Genton, Marc G.
    STAT, 2024, 13 (03):
  • [26] Model for generating non-Gaussian noise sequences having specified probability distribution and spectrum
    Sun, LS
    Shen, MF
    Xu, WL
    Li, ZC
    Beadle, P
    PARALLEL AND DISTRIBUTED COMPUTING: APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2004, 3320 : 795 - 798
  • [27] MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING
    BANFIELD, JD
    RAFTERY, AE
    BIOMETRICS, 1993, 49 (03) : 803 - 821
  • [28] Non-Gaussian statistical model of turbulence
    Qian, J
    JOURNAL OF TURBULENCE, 2006, 7 (24): : 1 - 10
  • [29] Evaluation of a non-Gaussian puff model
    Tirabassi, T
    Mangia, C
    Rizza, U
    Degrazia, GA
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2001, 16 (1-6) : 9 - 15
  • [30] A NON-GAUSSIAN MODEL FOR RANDOM SURFACES
    ADLER, RJ
    FIRMAN, D
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 303 (1479): : 433 - 462