Generation of Greenberger-Horne-Zeilinger states for silicon-vacancy centers using a decoherence-free subspace

被引:14
作者
Qiao, Yi-Fan [1 ]
Chen, Jia-Qiang [1 ]
Dong, Xing-Liang [1 ]
Wang, Bo-Long [1 ]
Hei, Xin-Lei [1 ]
Shen, Cai-Peng [1 ]
Zhou, Yuan [2 ]
Li, Peng-Bo [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Shaanxi Prov Key Lab Quantum Informat & Quantum O, Minist Educ,Key Lab Nonequilibrium Synth & Modula, Xian 710049, Peoples R China
[2] Hubei Univ Automot Technol, Sch Sci, Shiyan 442002, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER CAT STATES; QUANTUM; ENTANGLEMENT; DISSIPATION;
D O I
10.1103/PhysRevA.105.032415
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Generating Greenberger-Horne-Zeilinger (GHZ) states of solid-state spins is of great significance for quantum metrology and quantum error correction. We propose here an efficient scheme for generating high fidelity GHZ states in a solid-state setup where multiple silicon-vacancy (SiV) centers are embedded in a quasi-onedimensional acoustic diamond waveguide. The lattice distortion gives rise to a strong strain coupling between the orbital degree of freedom of SiV centers and the continuum phonon modes. Due to the permutation symmetry, we can take advantage of the decoherence-free subspace to avoid dissipation. Under the quantum Zeno regime, two control fields are used to achieve a ladderlike coupling structure in decoherence-free subspace along with an off-resonant two-photon Raman transition process. We calculate the pulse sequences for N = 4 and at the same time analyze the effect of different collective decay rates. Moreover, we consider the disorder in the imperfect position of SiV centers and the inhomogeneous strain coupling. This paper may provide a feasible protocol for the generation of GHZ states in a solid-state system.
引用
收藏
页数:11
相关论文
共 91 条
[1]   Generating Greenberger-Horne-Zeilinger states with squeezing and postselection [J].
Alexander, Byron ;
Bollinger, John J. ;
Uys, Hermann .
PHYSICAL REVIEW A, 2020, 101 (06)
[2]   Experimental investigation of a two-qubit decoherence-free subspace [J].
Altepeter, JB ;
Hadley, PG ;
Wendelken, SM ;
Berglund, AJ ;
Kwiat, PG .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :147901-1
[3]   Photoluminescence excitation and spectral hole burning spectroscopy of silicon vacancy centers in diamond [J].
Arend, Carsten ;
Becker, Jonas Nils ;
Sternschulte, Hadwig ;
Steinmueller-Nethl, Doris ;
Becher, Christoph .
PHYSICAL REVIEW B, 2016, 94 (04)
[4]   Robustness of decoherence-free subspaces for quantum computation [J].
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 1999, 60 (03) :1944-1955
[5]   Generating Stable Spin Squeezing by Squeezed-Reservoir Engineering [J].
Bai, Si-Yuan ;
An, Jun-Hong .
PHYSICAL REVIEW LETTERS, 2021, 127 (08)
[6]   Genuine tripartite nonlocality for random measurements in Greenberger-Horne-Zeilinger-class states and its experimental test [J].
Barasinski, Artur ;
Cernoch, Antonin ;
Lemr, Karel ;
Soubusta, Jan .
PHYSICAL REVIEW A, 2020, 101 (05)
[7]   All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures [J].
Becker, Jonas N. ;
Pingault, Benjamin ;
Gross, David ;
Guendogan, Mustafa ;
Kukharchyk, Nadezhda ;
Markham, Matthew ;
Edmonds, Andrew ;
Atatuere, Mete ;
Bushev, Pavel ;
Becher, Christoph .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)
[8]   Quantum computing using dissipation to remain in a decoherence-free subspace [J].
Beige, A ;
Braun, D ;
Tregenna, B ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1762-1765
[9]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[10]   Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J].
Bouwmeester, D ;
Pan, JW ;
Daniell, M ;
Weinfurter, H ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (07) :1345-1349