Evaluation of Shifts in the Potential Future Distributions of Carcharhinid Sharks Under Different Climate Change Scenarios

被引:14
|
作者
Diaz-Carballido, Pedro Luis [1 ]
Mendoza-Gonzalez, Gabriela [2 ]
Yanez-Arenas, Carlos Alberto [3 ]
Chiappa-Carrara, Xavier [3 ,4 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ciencias Mar & Limnol, Mexico City, DF, Mexico
[2] Univ Nacl Autonoma Mexico, UMDI Sisal, Fac Ciencias, CONACYT, Mexico City, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Merida, Merida, Mexico
关键词
ecological niche modeling (ENM); suitable area; sharks; RCP; carcharhinid; climate change; SPECIES DISTRIBUTION MODELS; ECOLOGICAL NICHE MODELS; MARINE BIODIVERSITY; ACCESSIBLE AREA; RANGE SHIFTS; CONSERVATION; FISH; VULNERABILITY; IMPACTS; HABITAT;
D O I
10.3389/fmars.2021.745501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change is currently considered one of the main phenomena affecting marine species through expansion or contraction of their distribution. Being ectothermic organisms, sharks of the family Carcharhinidae could be highly susceptible to the effects of climate change. These sharks are of great ecological importance, which is reflected in their role in the integrity of coastal and oceanic ecosystems as top predators that act to maintain the stability of the food chain, as well as providing economic value through fishing, consumption, and ecotourism. Currently, their populations are threatened by fishing pressure and anthropogenic activities, including meeting the demand for shark fins. Despite the ecological and economical importance of carcharhinid sharks, knowledge regarding how they are impacted by climate change remains scarce. Ecological niche modeling is a tool that allows analysis of future potential distributions under different climate change scenarios and could contribute to future planning activities and improved conservation outcomes for sharks. We generated models in Maxent in order to predict the potential geographic distribution of 25 carcharhinid sharks that inhabit Mexican waters, projecting this onto future climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) to calculate the potential losses and gains in their distribution areas by the year 2050. The greatest shifts in suitable areas were observed for the sharks Triaenodon obesus (gained area) and Carcharhinus porosus (lost area). Overall, under all four RCP future scenarios, six species presented gains in suitable area and 19 species presented losses. The greatest loss of suitable area for carcharhinid sharks was found with RCP8.5; however, under this high-emissions global warming scenario, seven species actually showed an increase in distribution area. Our results therefore indicate that climate change could reduce suitable areas for most of the species by 2050. Assessment of the distribution of shark species under climate change is urgently required in order to prioritize conservation efforts toward the most vulnerable species and to ensure the natural function of marine ecosystems, thus maintaining the important ecosystem services they provide to human society.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Modeling current geographic distribution and future range shifts of Sanghuangporus under multiple climate change scenarios in China
    Chen, Jia-He
    Shen, Shan
    Zhou, Li-Wei
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [32] Projecting the future of an alpine ungulate under climate change scenarios
    White, Kevin S.
    Gregovich, David P.
    Levi, Taal
    GLOBAL CHANGE BIOLOGY, 2018, 24 (03) : 1136 - 1149
  • [33] Prediction of future grassland vegetation cover fluctuation under climate change scenarios
    Zarei, Azin
    Asadi, Esmaeil
    Ebrahimi, Ataollah
    Jafari, Mohammad
    Malekian, Arash
    Nasrabadi, Hamid Mohammadi
    Chemura, Abel
    Maskell, Gina
    ECOLOGICAL INDICATORS, 2020, 119
  • [34] Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach
    Di Traglia, Mario
    Attorre, Fabio
    Francesconi, Fabio
    Valenti, Roberto
    Vitale, Marcello
    ECOLOGICAL MODELLING, 2011, 222 (04) : 925 - 934
  • [35] Potential distribution of pine wilt disease under future climate change scenarios
    Hirata, Akiko
    Nakamura, Katsunori
    Nakao, Katsuhiro
    Kominami, Yuji
    Tanaka, Nobuyuki
    Ohashi, Haruka
    Takano, Kohei Takenaka
    Takeuchi, Wataru
    Matsui, Tetsuya
    PLOS ONE, 2017, 12 (08):
  • [36] Shifts in native tree species distributions in Europe under climate change
    Dyderski, Marcin K.
    Paz-Dyderska, Sonia
    Jagodzinski, Andrzej M.
    Puchalka, Radoslaw
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 373
  • [37] Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios
    Reside, April E.
    VanDerWal, Jeremy
    Kutt, Alex S.
    ECOLOGY AND EVOLUTION, 2012, 2 (04): : 705 - 718
  • [38] The potential global distribution and dynamics of wheat under multiple climate change scenarios
    Yue, Yaojie
    Zhang, Puying
    Shang, Yanrui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 688 : 1308 - 1318
  • [39] Potential future changes in soil carbon dynamics in the Ziwuling Forest, China under different climate change scenarios
    Qu, Ruosong
    Chen, Shiyi
    Wang, Kefeng
    Liu, Qiuyu
    Yang, Bin
    Yue, Ming
    Peng, Changhui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [40] Identifying climate refugia for vulnerable marine ecosystem indicator taxa under future climate change scenarios
    Zelli, Edoardo
    Ellis, Joanne
    Pilditch, Conrad
    Rowden, Ashley A.
    Anderson, Owen F.
    Geange, Shane W.
    Bowden, David A.
    Stephenson, Fabrice
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 373