Synchronization of fractional order chaotic systems

被引:179
作者
Li, CG [1 ]
Liao, XF
Yu, JB
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Inst Elect Syst, Chengdu 610054, Sichuan, Peoples R China
[2] Chongqing Univ, Sch Comp Sci & Technol, Chongqing 400044, Peoples R China
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 06期
关键词
D O I
10.1103/PhysRevE.68.067203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The chaotic dynamics of fractional order systems began to attract much attention in recent years. In this Brief Report, we study the master-slave synchronization of fractional order chaotic systems. It is shown that fractional order chaotic systems can also be synchronized.
引用
收藏
页数:3
相关论文
共 25 条
[1]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[2]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[3]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[4]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[5]  
ARENA P, 1997, P ECCTD BUD, P1259
[6]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[7]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[8]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[9]  
CHEN G, 1997, CONTROL SYNCHRONIZAT
[10]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)