Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

被引:90
作者
Krishnaswamy, Pavitra [1 ,2 ,3 ]
Obregon-Henao, Gabriel [4 ]
Ahveninen, Jyrki [1 ,5 ]
Khan, Sheraz [1 ,5 ,6 ]
Babadi, Behtash [7 ]
Iglesias, Juan Eugenio [1 ]
Hamalainen, Matti S. [1 ,5 ,8 ,9 ]
Purdon, Patrick L. [5 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[4] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Massachusetts Gen Hosp, Dept Neurol, Charlestown, MA 02129 USA
[7] Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[8] Aalto Univ, Sch Sci, Dept Neurosci & Biomed Engn, Espoo 02150, Finland
[9] Karolinska Inst, Dept Clin Neurosci, Swedish Natl Facil Magnetoencephalog NatMEG, S-17177 Stockholm, Sweden
关键词
MEG; EEG; subcortical structures; source localization; sparsity; SURFACE-BASED ANALYSIS; M/EEG INVERSE PROBLEM; MAGNETIC-FIELDS; BASAL GANGLIA; HUMAN BRAIN; THALAMOCORTICAL SYNCHRONY; SOURCE LOCALIZATION; PROJECTION PURSUIT; SUBSPACE PURSUIT; MODEL;
D O I
10.1073/pnas.1705414114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded non-invasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain.
引用
收藏
页码:E10465 / E10474
页数:10
相关论文
共 72 条
  • [41] Magnetic field tomography of cortical and deep processes: Examples of ''real-time mapping'' of averaged and single trial MEG signals
    Ioannides, AA
    Liu, MJ
    Liu, LC
    Bamidis, PD
    Hellstrand, E
    Stephan, KM
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 1995, 20 (03) : 161 - 175
  • [42] Thalamic circuitry and thalamocortical synchrony
    Jones, EG
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 357 (1428) : 1659 - 1673
  • [43] The thalamic matrix and thalamocortical synchrony
    Jones, EG
    [J]. TRENDS IN NEUROSCIENCES, 2001, 24 (10) : 595 - 601
  • [44] Kensuke Sekihara SSN, 2008, ADAPTIVE SPATIAL FIL
  • [45] Principal angles between subspaces in an A-based scalar product:: Algorithms and perturbation estimates
    Knyazev, AV
    Argentati, ME
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) : 2008 - 2040
  • [46] Cortical patch basis model for spatially extended neural activity
    Limpiti, Tulaya
    Van Veen, Barry D.
    Wakai, Ronald T.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (09) : 1740 - 1754
  • [47] Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations
    Liu, AK
    Belliveau, JW
    Dale, AM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) : 8945 - 8950
  • [48] WHOLE-HEAD MAPPING OF MIDDLE-LATENCY AUDITORY-EVOKED MAGNETIC-FIELDS
    MAKELA, JP
    HAMALAINEN, M
    HARI, R
    MCEVOY, L
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1994, 92 (05): : 414 - 421
  • [49] An Adaptive Greedy Algorithm With Application to Nonlinear Communications
    Mileounis, Gerasimos
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 2998 - 3007
  • [50] Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation
    Molins, A.
    Stufflebeam, S. M.
    Brown, E. N.
    Hamalainen, M. S.
    [J]. NEUROIMAGE, 2008, 42 (03) : 1069 - 1077