Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

被引:90
作者
Krishnaswamy, Pavitra [1 ,2 ,3 ]
Obregon-Henao, Gabriel [4 ]
Ahveninen, Jyrki [1 ,5 ]
Khan, Sheraz [1 ,5 ,6 ]
Babadi, Behtash [7 ]
Iglesias, Juan Eugenio [1 ]
Hamalainen, Matti S. [1 ,5 ,8 ,9 ]
Purdon, Patrick L. [5 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[4] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Massachusetts Gen Hosp, Dept Neurol, Charlestown, MA 02129 USA
[7] Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[8] Aalto Univ, Sch Sci, Dept Neurosci & Biomed Engn, Espoo 02150, Finland
[9] Karolinska Inst, Dept Clin Neurosci, Swedish Natl Facil Magnetoencephalog NatMEG, S-17177 Stockholm, Sweden
关键词
MEG; EEG; subcortical structures; source localization; sparsity; SURFACE-BASED ANALYSIS; M/EEG INVERSE PROBLEM; MAGNETIC-FIELDS; BASAL GANGLIA; HUMAN BRAIN; THALAMOCORTICAL SYNCHRONY; SOURCE LOCALIZATION; PROJECTION PURSUIT; SUBSPACE PURSUIT; MODEL;
D O I
10.1073/pnas.1705414114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded non-invasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain.
引用
收藏
页码:E10465 / E10474
页数:10
相关论文
共 72 条
  • [1] PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX
    ALEXANDER, GE
    DELONG, MR
    STRICK, PL
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 : 357 - 381
  • [2] [Anonymous], 2005, Electric fields of the brain: The neurophysics of eeg
  • [3] Modeling and detecting deep brain activity with MEG & EEG
    Attal, Yohan
    Bhattacharjee, Manik
    Yelnik, Jerome
    Cottereau, Benoit
    Lefevre, Julien
    Okada, Yoshio
    Bardinet, Eric
    Chupin, Marie
    Baillet, Sylvain
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 4937 - +
  • [4] Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study
    Attal, Yohan
    Schwartz, Denis
    [J]. PLOS ONE, 2013, 8 (03):
  • [5] Attal Y, 2012, REV NEUROSCIENCE, V23, P85, DOI [10.1515/RNS.2011.056, 10.1515/rns.2011.056]
  • [6] A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem
    Babadi, Behtash
    Obregon-Henao, Gabriel
    Lamus, Camilo
    Haemaelaeinen, Matti S.
    Brown, Emery N.
    Purdon, Patrick L.
    [J]. NEUROIMAGE, 2014, 87 : 427 - 443
  • [7] SPARLS: The Sparse RLS Algorithm
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) : 4013 - 4025
  • [8] Electromagnetic brain mapping
    Baillet, S
    Mosher, JC
    Leahy, RM
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 14 - 30
  • [9] NUMERICAL METHODS FOR COMPUTING ANGLES BETWEEN LINEAR SUBSPACES
    BJORCK, A
    GOLUB, GH
    [J]. MATHEMATICS OF COMPUTATION, 1973, 27 (123) : 579 - 594
  • [10] Blumenfeld H, 2010, NEUROANATOMY THROUGH CLINICAL CASES, SECOND EDITION, P1