Integrating Transcriptomic Data with Mechanistic Systems Pharmacology Models for Virtual Drug Combination Trials

被引:15
作者
Barrette, Anne Marie [1 ]
Bouhaddou, Mehdi [1 ]
Birtwistle, Marc R. [1 ,2 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[2] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29631 USA
基金
美国国家卫生研究院;
关键词
Combination therapy; Mechanistic models; Cancer precision medicine; Stochastic simulation; Brain tumors; Quantitative systems pharmacology; ABL TYROSINE KINASE; CHRONIC MYELOID-LEUKEMIA; BREAST-CANCER; 1ST-LINE TREATMENT; CELL-MIGRATION; MEK INHIBITION; IN-VIVO; RAF; RESISTANCE; EFFICACY;
D O I
10.1021/acschemneuro.7b00197
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monotherapy clinical trials with mutation-targeted kinase inhibitors, despite some success in other cancers, have yet to impact glioblastoma (GBM). Besides insufficient blood brain barrier penetration, combinations are key to overcoming obstacles such as intratumoral heterogeneity, adaptive resistance, and the epistatic nature of tumor genomics that cause mutation-targeted therapies to fail. With now hundreds of potential drugs, exploring the combination space clinically and preclinically is daunting. We are building a simulation-based approach that integrates patient-specific data with a mechanistic computational model of pan-cancer driver pathways (receptor tyrosine kinases, RAS/RAF/ERK, PI3K/AKT/mTOR, cell cycle, apoptosis, and DNA damage) to prioritize drug combinations by their simulated effects on tumor cell proliferation and death. Here we illustrate a first step, tailoring the model to 14 GBM patients from The Cancer Genome Atlas defined by an mRNA-seq transcriptome, and then simulating responses to three promiscuous FDA-approved kinase inhibitors (bosutinib, ibrutinib, and cabozantinib) with evidence for blood brain barrier penetration. The model captures binding of the drug to primary targets and off-targets based on published affinity data and simulates responses of 100 heterogeneous tumor cells within a patient. Single drugs are marginally effective or even counterproductive. Common copy number alterations (PTEN loss, EGFR amplification, and NF1 loss) have a negligible correlation with single-drug or combination efficacy, reinforcing the importance of postgenetic approaches that account for kinase inhibitor promiscuity to match drugs to patients. Drug combinations tend to be either cytostatic or cytotoxic, but seldom both, highlighting the need for considering targeted and nontargeted therapy. Although we focus on GBM, the approach is generally applicable.
引用
收藏
页码:118 / 129
页数:12
相关论文
共 74 条
[1]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[2]   Mechanistic Vs. Empirical Network Models of Drug Action [J].
Birtwistle, M. R. ;
Mager, D. E. ;
Gallo, J. M. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2013, 2 (09)
[3]   Mutational profiling of kinases in glioblastoma [J].
Bleeker, Fonnet E. ;
Lamba, Simona ;
Zanon, Carlo ;
Molenaar, Remco J. ;
Hulsebos, Theo J. M. ;
Troost, Dirk ;
van Tilborg, Angela A. ;
Vandertop, W. Peter ;
Leenstra, Sieger ;
van Noorden, Cornelis J. F. ;
Bardelli, Alberto .
BMC CANCER, 2014, 14
[4]  
Bouhaddou M., 2017, BIORXIV
[5]  
Buchdunger E, 1996, CANCER RES, V56, P100
[6]   Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer [J].
Carver, Brett S. ;
Chapinski, Caren ;
Wongvipat, John ;
Hieronymus, Haley ;
Chen, Yu ;
Chandarlapaty, Sarat ;
Arora, Vivek K. ;
Le, Carl ;
Koutcher, Jason ;
Scher, Howard ;
Scardino, Peter T. ;
Rosen, Neal ;
Sawyers, Charles L. .
CANCER CELL, 2011, 19 (05) :575-586
[7]   Combination of RAF and MEK Inhibition for the Treatment of BRAF-Mutated Melanoma: Feedback Is Not Encouraged [J].
Chapman, Paul B. ;
Solit, David B. ;
Rosen, Neal .
CANCER CELL, 2014, 26 (05) :603-604
[8]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[9]   A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands [J].
Clegg, Lindsay E. ;
Mac Gabhann, Feilim .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (03)
[10]   Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease [J].
Cobleigh, MA ;
Vogel, CL ;
Tripathy, D ;
Robert, NJ ;
Scholl, S ;
Fehrenbacher, L ;
Wolter, JM ;
Paton, V ;
Shak, S ;
Lieberman, G ;
Slamon, DJ .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (09) :2639-2648