On the algebraic decomposition of a centralizer algebra of the hyperoctahedral group

被引:0
作者
Orellana, RC [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
来源
Algebraic Structures and Their Representations | 2005年 / 376卷
关键词
centralizer algebra; partition algebra; hyperoctahedral group; coxeter group; bratteli diagram;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a combinatorial rule for the decomposition of tenser powers of the signed permutation representation of the hyperoctahedral group. We then use this rule to describe the Bratteli diagram of a centralizer algebra of this group over k-th tenser space. We show that a basis for this algebra can be described completely in terms of set partitions and we give a set of generators and relations.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 37 条
[31]   A symmetry of the descent algebra of a finite Coxeter group [J].
Blessenohl, D ;
Hohlweg, C ;
Schocker, M .
ADVANCES IN MATHEMATICS, 2005, 193 (02) :416-437
[32]   Combinatorial properties of the Temperley–Lieb algebra of a Coxeter group [J].
Alfonso Pesiri .
Journal of Algebraic Combinatorics, 2013, 37 :717-736
[33]   A natural idempotent in the descent algebra of a finite Coxeter group [J].
Renteln, Paul .
ALGEBRAIC COMBINATORICS, 2023, 6 (05) :1177-1188
[34]   Combinatorial properties of the Temperley-Lieb algebra of a Coxeter group [J].
Pesiri, Alfonso .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (04) :717-736
[35]   The Terwilliger algebra of the halved n-cube from the viewpoint of its automorphism group action [J].
Hou, Lihang ;
Hou, Bo ;
Kang, Na ;
Gao, Suogang .
EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
[36]   MATRIX UNITS FOR THE GROUP ALGEBRA kG(f) = k((Z(2) x Z(2)) (sic) S-f) [J].
Sivakumar, B. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (02) :255-277
[37]   The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Indeed γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-Positive [J].
Jie Cao ;
Lily Li Liu .
Graphs and Combinatorics, 2021, 37 (6) :1943-1951