Relationship between the shear capacity and the flexural cracking load of FRP reinforced concrete beams

被引:28
|
作者
Alam, M. S. [1 ]
Hussein, A. [2 ]
机构
[1] Univ Bahrain, Dept Civil Engn, POB 32038, Sakheer, Bahrain
[2] Mem Univ Newfoundland, Dept Civil Engn, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Concrete beam; Shear capacity; Cracking load; Fiber reinforced polymer; STRENGTH; POLYMER; RESISTANCE; BEHAVIOR; MEMBERS; DESIGN;
D O I
10.1016/j.conbuildmat.2017.08.006
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper focuses on the relationship between the shear capacity and the flexural cracking load of Fiber Reinforced Polymer (FRP) reinforced concrete beams without stirrups. A relationship between the cracking load that causes a beam to crack at the middle of shear span and the shear capacity of the beam is confirmed based on the test results of 29 beams. The relationship was further examined by comparing the test results of 168 FRP reinforced beams and one-way slabs that were collected from literature. All specimens were reinforced in the longitudinal direction only and tested as simply supported conditions subjected to 4-point bending. The concrete compressive strength, reinforcement ratio, shear span-to depth ratio, and effective depth of the beams in the database were in the range of 24.1-88.3 MPa, 0.12-2.63%, 1.1-6.45, and 141-1111 mm, respectively. The comparison revealed that there is a strong relationship between the cracking loads and the shear capacity of the members. This relationship can be used to develop a shear design method for FRP reinforced members. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 50 条
  • [1] Shear strength model of FRP-reinforced concrete beams without shear reinforcement
    Dinh, Ngoc Hieu
    Roh, Young-Sook
    Truong, Gia Toai
    STRUCTURES, 2024, 64
  • [2] Shear performance and capacity of FRP reinforced concrete beams: Comprehensive review and design evaluation
    Mai, Guanghao
    Pan, Zezhou
    Zhen, Hao
    Deng, Xuhua
    Zheng, Chumao
    Qiu, Zhenye
    Xiong, Zhe
    Li, Lijuan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2569 - 2591
  • [3] Performance of Concrete Beams Reinforced with Basalt FRP for Flexure and Shear
    Tomlinson, Douglas
    Fam, Amir
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (02)
  • [4] Guidelines for flexural design of FRP reinforced concrete beams
    Jnaid, Fares
    JOURNAL OF COMPOSITE MATERIALS, 2021, 55 (12) : 1653 - 1666
  • [5] A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams
    Kamgar, Reza
    Bagherinejad, Mohammad Hadi
    Heidarzadeh, Heisam
    SOFT COMPUTING, 2020, 24 (09) : 6871 - 6887
  • [6] A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups
    Golafshani, Emadaldin Mohammadi
    Ashour, Ashraf
    ADVANCES IN ENGINEERING SOFTWARE, 2016, 97 : 29 - 39
  • [7] Modeling of shear behavior of reinforced concrete beams strengthened with FRP
    Spinella, Nino
    COMPOSITE STRUCTURES, 2019, 215 : 351 - 364
  • [8] Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement
    Ali, Ahmed H.
    Mohamed, Hamdy M.
    Chalioris, Constantin E.
    Deifalla, A.
    ENGINEERING STRUCTURES, 2021, 235
  • [9] Quantification of shear cracking in reinforced concrete beams
    Hu, Biao
    Wu, Yu-Fei
    ENGINEERING STRUCTURES, 2017, 147 : 666 - 678
  • [10] Flexural capacity and design of hybrid FRP-steel-reinforced concrete beams
    Yang, Yang
    Sun, Ze-Yang
    Wu, Gang
    Cao, Da-Fu
    Zhang, Zhi-Qin
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (07) : 1290 - 1304