Organic neuromorphic electronics for sensorimotor integration and learning in robotics

被引:86
作者
Krauhausen, Imke [1 ,2 ]
Koutsouras, Dimitrios A. [1 ]
Melianas, Armantas [3 ,4 ]
Keene, Scott T. [5 ]
Lieberth, Katharina [1 ]
Ledanseur, Hadrien [1 ]
Sheelamanthula, Rajendar [6 ]
Giovannitti, Alexander [3 ]
Torricelli, Fabrizio [7 ]
Mcculloch, Iain [6 ,8 ]
Blom, Paul W. M. [1 ]
Salleo, Alberto [3 ]
van de Burgt, Yoeri [2 ]
Gkoupidenis, Paschalis [1 ]
机构
[1] Max Planck Inst Polymer Res, Mainz, Germany
[2] Eindhoven Univ Technol, Microsyst, Inst Complex Mol Syst, Eindhoven, Netherlands
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Exponent, 149 Commonwealth Dr, Menlo Pk, CA 94025 USA
[5] Univ Cambridge, Dept Engn, Cambridge, England
[6] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[7] Univ Brescia, Dept Informat Engn, I-25123 Brescia, Italy
[8] Univ Oxford, Dept Chem, Oxford, England
基金
欧洲研究理事会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
D O I
10.1126/sciadv.abl5068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] Steady-state and transient behavior of organic electrochemical transistors
    Bernards, Daniel A.
    Malliaras, George G.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) : 3538 - 3544
  • [2] BRAITENBERG V, 1993, BRAIN THEORY, P119
  • [3] Braitenberg Valentino., 2004, Vehicles: experiments in synthetic psychology. Bradford book psychology
  • [4] Buzsaki G., 2021, The Brain from Inside Out
  • [5] A memristor-based hybrid analog-digital computing platform for mobile robotics
    Chen, Buyun
    Yang, Hao
    Song, Boxiang
    Meng, Deming
    Yan, Xiaodong
    Li, Yuanrui
    Wang, Yunxiang
    Hu, Pan
    Ou, Tse-Hsien
    Barnell, Mark
    Wu, Qing
    Wang, Han
    Wu, Wei
    [J]. SCIENCE ROBOTICS, 2020, 5 (47)
  • [6] Trainable sensorimotor mapping in a neuromorphic robot
    Conradt, Joerg
    Galluppi, Francesco
    Stewart, Terrence C.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 71 : 60 - 68
  • [7] Dusenbery D., 2011, LIVING MICRO SCALE U
  • [8] What is the biological basis of sensorimotor integration?
    Flanders, Martha
    [J]. BIOLOGICAL CYBERNETICS, 2011, 104 (1-2) : 1 - 8
  • [9] Robotics and Neuroscience
    Floreano, Dario
    Ijspeert, Auke Jan
    Schaal, Stefan
    [J]. CURRENT BIOLOGY, 2014, 24 (18) : R910 - R920
  • [10] Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing
    Fuller, Elliot J.
    Keene, Scott T.
    Melianas, Armantas
    Wang, Zhongrui
    Agarwal, Sapan
    Li, Yiyang
    Tuchman, Yaakov
    James, Conrad D.
    Marinella, Matthew J.
    Yang, J. Joshua
    Salleo, Alberto
    Talin, A. Alec
    [J]. SCIENCE, 2019, 364 (6440) : 570 - +