A Nitsche-based formulation for fluid-structure interactions with contact

被引:34
|
作者
Burman, Erik [1 ]
Fernandez, Miguel A. [2 ,3 ,4 ]
Frei, Stefan [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Inria Paris, F-75012 Paris, France
[3] Sorbonne Univ, F-75005 Paris, France
[4] CNRS, UMR 7598, LJLL, F-75005 Paris, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2020年 / 54卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Fluid-structure interaction; contact mechanics; Eulerian formalism; Nitsche's method; slip conditions; FINITE-ELEMENT-METHOD; ACTIVE SET STRATEGY; FRICTIONAL CONTACT; INCOMPRESSIBLE FLUID; EULERIAN FORMULATION; STOKES PROBLEM; APPROXIMATION; DYNAMICS; MODELS; DISCRETIZATION;
D O I
10.1051/m2an/2019072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a Nitsche-based formulation for fluid-structure interaction (FSI) problems with contact. The approach is based on the work of Chouly and Hild (SIAM J. Numer. Anal. 51 (2013) 1295-1307) for contact problems in solid mechanics. We present two numerical approaches, both of them formulating the FSI interface and the contact conditions simultaneously in equation form on a joint interface-contact surface Gamma(t). The first approach uses a relaxation of the contact conditions to allow for a small mesh-dependent gap between solid and wall. The second alternative introduces an artificial fluid below the contact surface. The resulting systems of equations can be included in a consistent fashion within a monolithic variational formulation, which prevents the so-called "chattering" phenomenon. To deal with the topology changes in the fluid domain at the time of impact, we use a fully Eulerian approach for the FSI problem. We compare the effect of slip and no-slip interface conditions and study the performance of the method by means of numerical examples.
引用
收藏
页码:531 / 564
页数:34
相关论文
共 50 条
  • [31] Sound generated by fluid-structure interactions
    Howe, MS
    COMPUTERS & STRUCTURES, 1997, 65 (03) : 433 - 446
  • [32] Fluid-structure interactions with applications to biology
    Huang, Wei-Xi
    Alben, Silas
    ACTA MECHANICA SINICA, 2016, 32 (06) : 977 - 979
  • [33] Computational modeling in fluid-structure interactions
    de Langre, E
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2001, (01): : 34 - 38
  • [34] Special issue on Fluid-Structure Interactions
    Mahbub, Alam Md.
    Wind and Structures, An International Journal, 2019, 29 (01):
  • [35] TRANSIENT CAVITATION IN FLUID-STRUCTURE INTERACTIONS
    KOT, CA
    HSIEH, BJ
    YOUNGDAHL, CK
    VALENTIN, RA
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1981, 103 (04): : 345 - 351
  • [36] A discontinuous Nitsche-based finite element formulation for the imposition of the Navier-slip condition over embedded volumeless geometries
    Zorrilla, Ruben
    de Tetto, Antonia Larese
    Rossi, Riccardo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (09) : 2968 - 3003
  • [37] Fluid-structure interactions of a circular cylinder in a stratified fluid
    Christin, Sarah
    Meunier, Patrice
    Le Dizes, Stephane
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [38] Fluid-structure interactions with both structural and fluid nonlinearities
    Bendiksen, O. O.
    Seber, G.
    JOURNAL OF SOUND AND VIBRATION, 2008, 315 (03) : 664 - 684
  • [39] Modeling of fluid-structure interactions with the space-time finite elements: contact problems
    Sathe, Sunil
    Tezduyar, Tayfun E.
    COMPUTATIONAL MECHANICS, 2008, 43 (01) : 51 - 60
  • [40] Simulation of drill-string systems with fluid-structure and contact interactions in realistic geometries
    Galasso, Sara
    Santelli, Luca
    Zambetti, Raffaello
    Giusteri, Giulio G.
    COMPUTATIONAL MECHANICS, 2025, 75 (03) : 1165 - 1189