Price forecasting of day-ahead electricity markets using a hybrid forecast method

被引:162
|
作者
Shafie-khah, M. [1 ]
Moghaddam, M. Parsa [1 ]
Sheikh-El-Eslami, M. K. [1 ]
机构
[1] Tarbiat Modares Univ, Tehran, Iran
关键词
Price forecast; Hybrid forecast method; Wavelet transform (WT); Auto-Regressive Integrated Moving Average (ARIMA); Radial Basis Function Neural Networks (RBFN); Particle Swarm Optimization (PSO); ARTIFICIAL NEURAL-NETWORKS; INFORMATION; MODELS; SYSTEM; LOADS;
D O I
10.1016/j.enconman.2010.10.047
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2165 / 2169
页数:5
相关论文
共 50 条
  • [41] A New Day-Ahead Hourly Electricity Price Forecasting Framework
    Ghofrani, M.
    Azimi, R.
    Najafabadi, F. M.
    Myers, N.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [42] Electricity price forecasting on the day-ahead market using artificial intelligence algorithms
    Galinska, Jolanta
    Terlikowski, Pawel
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 156 - 162
  • [43] Day-ahead Electricity Price Forecasting Using the Relief Algorithm and Neural Networks
    Amjady, Nima
    Daraeepour, Ali
    2008 5TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ELECTRICITY MARKET, VOLS 1 AND 2, 2008, : 674 - 680
  • [44] Day-ahead electricity price forecasting using WT, CLSSVM and EGARCH model
    Zhang, Jinliang
    Tan, Zhongfu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 362 - 368
  • [45] Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network
    Amjady, N.
    Daraeepour, A.
    Keynia, F.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2010, 4 (03) : 432 - 444
  • [46] A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid
    Wu, Lei
    Shahidehpour, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (12) : 1937 - 1950
  • [47] Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
    Conejo, AJ
    Plazas, MA
    Espínola, R
    Molina, AB
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 1035 - 1042
  • [48] Price forecasting for day-ahead electricity market using Recursive Neural Network
    Mandal, Paras
    Senjyu, Tomonobu
    Urasaki, Naornitsu
    Yona, Atsushi
    Funabashi, Toshihisa
    Srivastava, Anurag K.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 3097 - 3104
  • [49] Day-ahead Electricity Price forecasting using Wavelets and Weighted Nearest Neighborhood
    Bhanu, C. V. K.
    Sudheer, G.
    Radhakrishna, C.
    Phanikanth, V.
    2008 JOINT INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) AND IEEE POWER INDIA CONFERENCE, VOLS 1 AND 2, 2008, : 422 - +
  • [50] Day-Ahead Electricity Price Forecasting Model Based on Artificial Neural Networks for Energy Markets
    Anbazhagan S.
    Ramachandran B.
    EAI Endorsed Transactions on Energy Web, 2021, 8 (33) : 1 - 10