Price forecasting of day-ahead electricity markets using a hybrid forecast method

被引:163
|
作者
Shafie-khah, M. [1 ]
Moghaddam, M. Parsa [1 ]
Sheikh-El-Eslami, M. K. [1 ]
机构
[1] Tarbiat Modares Univ, Tehran, Iran
关键词
Price forecast; Hybrid forecast method; Wavelet transform (WT); Auto-Regressive Integrated Moving Average (ARIMA); Radial Basis Function Neural Networks (RBFN); Particle Swarm Optimization (PSO); ARTIFICIAL NEURAL-NETWORKS; INFORMATION; MODELS; SYSTEM; LOADS;
D O I
10.1016/j.enconman.2010.10.047
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy price forecasting in a competitive electricity market is crucial for the market participants in planning their operations and managing their risk, and it is also the key information in the economic optimization of the electric power industry. However, price series usually have a complex behavior due to their nonlinearity, nonstationarity, and time variancy. In this paper, a novel hybrid method to forecast day-ahead electricity price is proposed. This hybrid method is based on wavelet transform, Auto-Regressive Integrated Moving Average (ARIMA) models and Radial Basis Function Neural Networks (RBFN). The wavelet transform provides a set of better-behaved constitutive series than price series for prediction. ARIMA model is used to generate a linear forecast, and then RBFN is developed as a tool for nonlinear pattern recognition to correct the estimation error in wavelet-ARIMA forecast. Particle Swarm Optimization (PSO) is used to optimize the network structure which makes the RBFN be adapted to the specified training set, reducing computation complexity and avoiding overfitting. The proposed method is examined on the electricity market of mainland Spain and the results are compared with some of the most recent price forecast methods. The results show that the proposed hybrid method could provide a considerable improvement for the forecasting accuracy. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2165 / 2169
页数:5
相关论文
共 50 条
  • [21] Electricity Day-Ahead Market Price Forecasting by Using Artificial Neural Networks: An Application for Turkey
    Kabak, Mehmet
    Tasdemir, Taha
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (03) : 2317 - 2326
  • [22] Forecasting Day-Ahead Electricity Price with Artificial Neural Networks: a Comparison of Architectures
    Pavicevic, Milutin
    Popovic, Tomo
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 1083 - 1088
  • [23] A combination approach based on a novel data clustering method and Bayesian recurrent neural network for day-ahead price forecasting of electricity markets
    Ghayekhloo, M.
    Azimi, R.
    Ghofrani, M.
    Menhaj, M. B.
    Shekari, E.
    ELECTRIC POWER SYSTEMS RESEARCH, 2019, 168 : 184 - 199
  • [24] Forecasting the day-ahead price in electricity balancing and settlement market of Turkey by using artificial neural networks
    Kolmek, Mehmet Ali
    Navruz, Isa
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2015, 23 (03) : 841 - 852
  • [25] Day-ahead electricity market price forecasting using artificial neural network with spearman data correlation
    Nascimento, Joao
    Pinto, Tiago
    Vale, Zita
    2019 IEEE MILAN POWERTECH, 2019,
  • [26] Probabilistic day-ahead system marginal price forecasting with ANN for the Turkish electricity market
    Ozguner, Erdem
    Tor, Osman Bulent
    Guven, Ali Nezih
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (06) : 4923 - 4935
  • [27] Investigation of forecasting methods for the hourly spot price of the Day-Ahead Electric Power Markets
    Chinnathambi, Radhakrishnan Angamuthu
    Ranganathan, Prakash
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3079 - 3086
  • [28] Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique
    Reddy, S. Surender
    Jung, Chan-Mook
    Seog, Ko Jun
    FRONTIERS IN ENERGY, 2016, 10 (01) : 105 - 113
  • [29] Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique
    S. Surender Reddy
    Chan-Mook Jung
    Ko Jun Seog
    Frontiers in Energy, 2016, 10 : 105 - 113
  • [30] Day-ahead electricity price forecasting via the application of artificial neural network based models
    Panapakidis, Ioannis P.
    Dagoumas, Athanasios S.
    APPLIED ENERGY, 2016, 172 : 132 - 151