On limitations of the Bruggeman formalism for inverse homogenization

被引:15
|
作者
Jamaian, Siti S. [1 ,2 ]
Mackay, Tom G. [1 ,2 ,3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Penn State Univ, Dept Engn Sci & Mech, NanoMM Nanoengineered Metamat Grp, University Pk, PA 16802 USA
关键词
Bruggeman; Maxwell Garnett; inverse homogenization; metamaterials; COMPOSITE-MATERIALS; MEDIA;
D O I
10.1117/1.3460908
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The Bruggeman formalism provides an estimate is an element of(Br)(hcm) of the relative permittivity of a homogenized composite material (HCM), arising from two component materials with relative permittivities is an element of(a) and is an element of(b). It can be inverted to provide an estimate of is an element of(a), from a knowledge of is an element of(Br)(hcm) and is an element of(b). Numerical studies show that the inverse Bruggeman estimate is an element of(a) can be physically implausible when (i) Re {is an element of(Br)(hcm)}/Re {is an element of(b)} > 0 and the degree of HCM dissipation is moderate or greater; or (ii) Re {is an element of(Br)(hcm)}/Re {is an element of(b)} < 0 regardless of the degree of HCM dissipation. Furthermore, even when the inverse Bruggeman estimate is not obviously implausible, huge discrepancies can exist between this estimate and the corresponding estimate provided by the inverse Maxwell Garnett formalism.
引用
收藏
页数:7
相关论文
共 19 条
  • [1] Application of Bruggeman and Maxwell Garnett homogenization formalisms to random composite materials containing dimers
    Mackay, Tom G.
    Lakhtakia, Akhlesh
    WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (03) : 429 - 454
  • [2] Toward a cylindrical cloak via inverse homogenization
    Anderson, Tom H.
    Mackay, Tom G.
    Lakhtakia, Akhlesh
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (03) : 239 - 243
  • [3] Robust Inverse Homogenization of Elastic Microstructures
    Marc Dambrine
    Salah Zerrouq
    Journal of Optimization Theory and Applications, 2023, 199 : 209 - 232
  • [4] Inverse homogenization using the topological derivative
    Ferrer, Alex
    Giusti, Sebastian Miguel
    ENGINEERING COMPUTATIONS, 2022, 39 (01) : 337 - 353
  • [5] Robust Inverse Homogenization of Elastic Microstructures
    Dambrine, Marc
    Zerrouq, Salah
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 199 (01) : 209 - 232
  • [6] Homogenization and inverse homogenization for 3D composites of complex architecture
    Steven, Grant
    ENGINEERING COMPUTATIONS, 2006, 23 (3-4) : 432 - 450
  • [7] On the inverse homogenization problem of linear composite materials
    Weiglhofer, WS
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 28 (06) : 421 - 423
  • [8] Inverse homogenization using isogeometric shape optimization
    Luedeker, Julian K.
    Sigmund, Ole
    Kriegesmann, Benedikt
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [9] Homogenization of Thin Dielectric Composite Slabs: Techniques and Limitations
    Kettunen, Henrik
    Qi, Jiaran
    Wallen, Henrik
    Sihvola, Ari
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2011, 26 (03): : 179 - 187
  • [10] FFT-based Inverse Homogenization for Cellular Material Design
    Chen, Zeyao
    Wu, Baisheng
    Xie, Yi Min
    Wu, Xian
    Zhou, Shiwei
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 231