Coupling Bimetallic Oxides/Alloys and N-Doped Carbon Nanotubes as Tri-Functional Catalysts for Overall Water Splitting and Zinc-Air Batteries

被引:60
作者
Qin, Qing [1 ]
Li, Ping [1 ]
Chen, Lulu [1 ]
Liu, Xien [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
关键词
oxygen reduction reaction; oxygen evolution reaction; hydrogen evolution reaction; zinc-air battery; water splitting cell; BIFUNCTIONAL CATHODE; OXYGEN REDUCTION; LITHIUM STORAGE; EFFICIENT; ELECTROCATALYSTS; EVOLUTION; HYDROGEN; OXIDES; PERFORMANCE; FABRICATION;
D O I
10.1021/acsami.8b15612
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An effectively multifunctional electrocatalyst is crucial for catalyzing the reactions occurred at electrodes in zinc-air batteries and water splitting cells, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR). Herein, two non-noble metal-based multifunctional electrocatalysts of N-doped carbon nanotubes NCNT/CoFeCoFe2O4 and NCNT/MnO(MnFe)(2)O-3 are prepared by a simple solvothermal procedure, followed by two-step annealing under the argon and ammonia atmosphere. The resultant electrocatalysts exhibit good trifunctional performances for HER, ORR, and OER. Notably, the NCNT/CoFeCoFe2O4 and NCNT/MnO(MnFe)(2)O-3 assembled zinc-air batteries exhibit high energy densities of 727 and 776 W h kg(Zn)(-1) at the current density of 20 mA cm(-2), respectively. Furthermore, the NCNT/CoFeCoFe2O4-based rechargeable zinc-air battery remains excellent durability after discharge-charge cycle testing for 22 h, comparable to the noble metal-based catalyst (Pt/C + IrO2)-assembled zinc-air battery. Furthermore, the NCNT/CoFeCoFe2O4 and NCNT/MnO(MnFe)(2)O-3-assembled water splitting cells need similar to 1.65 and 1.70 V, respectively, to deliver a current density of 10 mA cm(-2), lower than that of IrO2Pt/C (1.71 V) and present excellent durability under long-term electrolysis. This work provides a facile strategy to prepare highly active multiple functional electrocatalysts for energy conversion and storage.
引用
收藏
页码:39828 / 39838
页数:11
相关论文
共 53 条
[1]   An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon [J].
Alshehri, Saad M. ;
Alhabarah, Ameen N. ;
Ahmed, Jahangeer ;
Naushad, Mu ;
Ahamad, Tansir .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 514 :1-9
[2]   Boron-Capped Tris(glyoximato) Cobalt Clathrochelate as a Precursor for the Electrodeposition of Nanoparticles Catalyzing H2 Evolution in Water [J].
Anxolabehere-Mallart, Elodie ;
Costentin, Cyrille ;
Fournier, Maxime ;
Nowak, Sophie ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6104-6107
[3]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[4]   Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display [J].
Chen, Xu ;
Liu, Bin ;
Zhong, Cheng ;
Liu, Zhi ;
Liu, Jie ;
Ma, Lu ;
Deng, Yida ;
Han, Xiaopeng ;
Wu, Tianpin ;
Hu, Wenbin ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[5]   Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis [J].
Esswein, Arthur J. ;
McMurdo, Meredith J. ;
Ross, Phillip N. ;
Bell, Alexis T. ;
Tilley, T. Don .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :15068-15072
[6]   Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD [J].
Feng, Xu ;
Cox, David F. .
SURFACE SCIENCE, 2018, 675 :47-53
[7]   XANES study of electronic and structural nature of Mn-sites in manganese oxides with catalytic properties [J].
Figueroa, SJA ;
Requejo, FG ;
Lede, EJ ;
Lamaita, L ;
Peluso, MA ;
Sambeth, JE .
CATALYSIS TODAY, 2005, 107-08 :849-855
[8]   Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles [J].
Fu, Gengtao ;
Yan, Xiaoxiao ;
Chen, Yifan ;
Xu, Lin ;
Sun, Dongmei ;
Lee, Jong-Min ;
Tang, Yawen .
ADVANCED MATERIALS, 2018, 30 (05)
[9]   NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst [J].
Fu, Yue ;
Yu, Hai-Yang ;
Jiang, Cong ;
Zhang, Tian-Heng ;
Zhan, Run ;
Li, Xiaowei ;
Li, Jian-Feng ;
Tian, Jing-Hua ;
Yang, Ruizhi .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (09)
[10]   Fabrication of ε-Fe2N Catalytic Sites in Porous Carbons Derived from an Iron-Triazolate Crystal [J].
Fujiwara, Yu-ichi ;
Lee, Jet-Sing M. ;
Tsujimoto, Masahiko ;
Kongpatpanich, Kanokwan ;
Pila, Taweesak ;
Iimura, Ken-ichi ;
Tobori, Norio ;
Kitagawa, Susumu ;
Horike, Satoshi .
CHEMISTRY OF MATERIALS, 2018, 30 (06) :1830-1834