Stacky dualities for the moduli of Higgs bundles

被引:1
|
作者
Derryberry, Richard [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Bahen Ctr, Dept Math, 40 St George St Room 6290, Toronto, ON M5S 2E5, Canada
基金
美国国家科学基金会;
关键词
Geometric Langlands; Mirror symmetry; Higgs bundles; GEOMETRIC LANGLANDS; FUNDAMENTAL LEMMA; MIRROR SYMMETRY; FIELD-THEORIES; REPRESENTATIONS; SYSTEMS;
D O I
10.1016/j.aim.2020.107152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The central result of this paper is an identification of the shifted Cartier dual of the moduli stack M-g(C) of (G) over tilde -Higgs bundles on C of arbitrary degree (modulo shifts by Z((G) over tilde)) with a quotient of the Langlands dual stack MLg(C). Via hyperkahler rotation, this may equivalently be viewed as the identification of an SYZ fibration relating Hitchin systems for arbitrary Langlands dual semisimple groups, coupled to nontrivial finite B-fields. As a corollary certain self-dual stacks M-g(c)/Gamma are observed to exist, which I conjecture to be the Coulomb branches for the 3d reduction of the 4d V = 2 theories of class S. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [21] On the Voevodsky motive of the moduli space of Higgs bundles on a curve
    Victoria Hoskins
    Simon Pepin Lehalleur
    Selecta Mathematica, 2021, 27
  • [22] Moduli spaces of Higgs bundles on degenerating Riemann surfaces
    Swoboda, Jan
    ADVANCES IN MATHEMATICS, 2017, 322 : 637 - 681
  • [23] Hilbert Schemes as Moduli of Higgs Bundles and Local Systems
    Groechenig, Michael
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (23) : 6523 - 6575
  • [24] Symplectic Geometry of a Moduli Space of Framed Higgs Bundles
    Biswas, Indranil
    Logares, Marina
    Peon-Nieto, Ana
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 5623 - 5650
  • [25] Special Kahler geometry on the moduli spaces of Higgs bundles
    Huang, Zhenxi
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [26] On the Voevodsky motive of the moduli space of Higgs bundles on a curve
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [27] A Torelli theorem for the moduli space of parabolic Higgs bundles
    Gomez, Tomas L.
    Logares, Marina
    ADVANCES IN GEOMETRY, 2011, 11 (03) : 429 - 444
  • [28] On the motives of moduli of parabolic chains and parabolic Higgs bundles
    Do, Viet Cuong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [29] A Torelli theorem for the moduli space of Higgs bundles on a curve
    Biswas, I
    Gómez, TL
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 159 - 169
  • [30] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89