Stacky dualities for the moduli of Higgs bundles

被引:1
作者
Derryberry, Richard [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[2] Univ Toronto, Bahen Ctr, Dept Math, 40 St George St Room 6290, Toronto, ON M5S 2E5, Canada
基金
美国国家科学基金会;
关键词
Geometric Langlands; Mirror symmetry; Higgs bundles; GEOMETRIC LANGLANDS; FUNDAMENTAL LEMMA; MIRROR SYMMETRY; FIELD-THEORIES; REPRESENTATIONS; SYSTEMS;
D O I
10.1016/j.aim.2020.107152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The central result of this paper is an identification of the shifted Cartier dual of the moduli stack M-g(C) of (G) over tilde -Higgs bundles on C of arbitrary degree (modulo shifts by Z((G) over tilde)) with a quotient of the Langlands dual stack MLg(C). Via hyperkahler rotation, this may equivalently be viewed as the identification of an SYZ fibration relating Hitchin systems for arbitrary Langlands dual semisimple groups, coupled to nontrivial finite B-fields. As a corollary certain self-dual stacks M-g(c)/Gamma are observed to exist, which I conjecture to be the Coulomb branches for the 3d reduction of the 4d V = 2 theories of class S. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:55
相关论文
共 64 条
  • [1] Liouville Correlation Functions from Four-Dimensional Gauge Theories
    Alday, Luis F.
    Gaiotto, Davide
    Tachikawa, Yuji
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) : 167 - 197
  • [2] [Anonymous], 1978, Graduate Texts in Mathematics
  • [3] PARTIAL FOURIER-MUKAI TRANSFORM FOR INTEGRABLE SYSTEMS WITH APPLICATIONS TO HITCHIN FIBRATION
    Arinkin, Dima
    Fedorov, Roman
    [J]. DUKE MATHEMATICAL JOURNAL, 2016, 165 (15) : 2991 - 3042
  • [4] Arinkin D, 2013, J ALGEBRAIC GEOM, V22, P363
  • [5] ARTIN M, 1973, LECT NOTES MATH, V305
  • [6] HIGHER-DIMENSIONAL ALGEBRA AND TOPOLOGICAL QUANTUM-FIELD THEORY
    BAEZ, JC
    DOLAN, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6073 - 6105
  • [7] The Picard group of the moduli of G-bundles on a curve
    Beauville, A
    Laszlo, Y
    Sorger, C
    [J]. COMPOSITIO MATHEMATICA, 1998, 112 (02) : 183 - 216
  • [8] Ben-Assat O, 2009, T AM MATH SOC, V361, P5469
  • [9] Betti Geometric Langlands
    Ben-Zvi, David
    Nadler, David
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 3 - 41
  • [10] TOPOLOGICAL REDUCTION OF 4D SYM TO 2D SIGMA-MODELS
    BERSHADSKY, M
    JOHANSEN, A
    SADOV, V
    VAFA, C
    [J]. NUCLEAR PHYSICS B, 1995, 448 (1-2) : 166 - 186