Some results on self-injective rings and Σ-CS rings

被引:4
作者
Dinh, HQ [1 ]
Van Huynh, D [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
CS; (Quasi)-continuous; injective modules; self-injective; Quasi-Frobenius rings;
D O I
10.1081/AGB-120024867
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is CS if every submodule of M is essential in a direct summand of M. In this note we use the CS condition to provide conditions for semiperfect rings to be self-injective. Further we show that every finitely generated CS right module over a right semi-artinian ring has finite uniform dimension. Using this, we prove that if R is a right semi-artinian ring such that R-R((N)) is CS, then R-R((A)) is also CS for any set A. Moreover, R is then right and left artinian.
引用
收藏
页码:6063 / 6077
页数:15
相关论文
共 28 条
[1]  
Anderson F. W., 1992, GRADUATE TEXTS MATH, V13
[2]   RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND [J].
CHATTERS, AW ;
HAJARNAVIS, CR .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :61-80
[3]   WHEN IS A SELF-INJECTIVE SEMIPERFECT RING QUASI-FROBENIUS [J].
CLARK, J ;
VANHUYNH, D .
JOURNAL OF ALGEBRA, 1994, 165 (03) :531-542
[4]   SIGMA-EXTENDING MODULES [J].
CLARK, J ;
WISBAUER, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 104 (01) :19-32
[5]   On semi-artinian modules and injectivity conditions [J].
Clark, J ;
Smith, PF .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1996, 39 :263-270
[6]  
DUNG N. V., 1994, EXTENDING MODULES
[7]   SIGMA-CS-MODULES [J].
DUNG, NV ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (01) :83-93
[8]  
DUNG NV, 1994, J PURE APPL ALGEBRA, V164, P531
[9]  
FAITH C, 1973, GRUNDL MATH, V190
[10]  
FAITH C, 1976, ALGEBRA, V2