The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria

被引:7
|
作者
Oubohssaine, Malika [1 ]
Dahmani, Ikram [1 ]
Sbabou, Laila [1 ]
Bruneel, Odile [2 ]
Aurag, Jamal [1 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Ctr Plant & Microbial Biotechnol, Microbiol & Mol Biol Team,Biodivers & Environm, Ave Ibn Battouta,BP 1014, Rabat 10000, Morocco
[2] Univ Montpellier, Lab HydroSci Montpellier, UMR5559 CNRS IRD UM, CC0057 MSE,16 Rue Auguste Broussonet, F-34090 Montpellier, France
来源
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY | 2022年 / 39卷
关键词
Abandoned mining site; Cultivable bacteria; Sulla spinosissima rhizosphere; PGP traits; Antifungal activity; Heavy metal tolerance; ANTIFUNGAL ACTIVITY; RIBOSOMAL-RNA; BACTERIA; PHYTOREMEDIATION; CONTAMINATION; BIOCONTROL; ACCUMULATION; SIDEROPHORE; EFFICIENCY; DIVERSITY;
D O I
10.1016/j.bcab.2021.102236
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Heavy metals tolerant soil bacteria are known to play essential roles in biogeochemical cycles, biotransformation of metals, bioremediation processes and, plant adaptation. The objective of this study was to isolate and characterize the bacterial strains associated with Sulla spinosissima, a native legume species growing in three abandoned mining sites situated in the Oujda region (East Morocco). Globally, more than 370 bulk and rhizospheric soil bacteria were isolated. Their identification by 16S rDNA sequencing showed that dominant phyla were Firmicutes, Actinobacteria, and Proteobacteria, while at the genus level Bacillus dominated, followed by Stenotrophomonas, Arthrobacter, and Rhodococcus. All the soils contained strains possessing plant growth-promoting traits. The best-performing strains were LMR283 for auxin production (145 mu g mL(-1)), LMR291 for phosphate solubilization (67.6 mg L-1), LMR280 for siderophore production (92.4%) and LMR326 for ACC deaminase activity (105 nmoL alpha-ketobutyrate mg(-1) h(-1)). Among tolerant PGP bacteria, 17 isolates showed antagonistic activity against the pathogen Fusarium oxysporum and 26 produced lytic enzymes. It was relevant that the rhizospheric soils prospected compared to bulk soils contained more interesting isolates for all the studied properties, in particular for soils sampled from Oued El Heimer and Sidi Boubker sites (respectively 79 and 63% of performing strains). Data presented here indicate that Sulla spinosissima growing in heavy metal soils is associated with multifarious active bacterial populations that probably sustain plant tolerance and growth under the prevailing stressful conditions. Superior strains identified are good candidates to be used with selected plants in rehabilitation programs in the contaminated ecosystems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Native Heavy Metal-Tolerant Plant Growth Promoting Rhizobacteria Improves Sulla spinosissima (L.) Growth in Post-Mining Contaminated Soils
    Oubohssaine, Malika
    Sbabou, Laila
    Aurag, Jamal
    MICROORGANISMS, 2022, 10 (05)
  • [2] Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)
    Santoyo, Gustavo
    Urtis-Flores, Carlos Alberto
    Loeza-Lara, Pedro Damian
    del Carmen Orozco-Mosqueda, Ma.
    Glick, Bernard R.
    BIOLOGY-BASEL, 2021, 10 (06):
  • [3] Growth response and heavy metals tolerance of Axonopus affinis, inoculated with plant growth-promoting rhizobacteria
    Labra Cardon, Daniela
    Montes Villafan, Silvano
    Rodriguez Tovar, Aida
    Perez Jimenez, Sandra
    Guerrero Zuniga, L. Angelica
    Amezcua Allieri, Myriam A.
    Perez, Nestor O.
    Rodriguez Dorantes, Angelica
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (51): : 8772 - 8782
  • [4] Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils
    Melo, M. R.
    Flores, N. R.
    Murrieta, S. V.
    Tovar, A. R.
    Zuniga, A. G.
    Hernandez, O. F.
    Mendoza, A. P.
    Perez, N. O.
    Dorantes, A. R.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2011, 8 (04) : 807 - 816
  • [5] Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals
    Koo, So-Yeon
    Hong, Sun Hwa
    Ryu, Hee Wook
    Cho, Kyung-suk
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 20 (03) : 587 - 593
  • [6] Plant Growth-Promoting Rhizobacteria (PGPR) and Phosphorus Fertilizer-Assisted Phytoextraction of Toxic Heavy Metals from Contaminated Soils
    Gullap, M. Kerim
    Dasci, Mahmut
    Erkovan, H. Ibrahim
    Koc, Ali
    Turan, Metin
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2014, 45 (19) : 2593 - 2606
  • [7] Effectiveness of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Chromium Stressed Soils
    Gupta, Pratishtha
    Rani, Rupa
    Chandra, Avantika
    Varjani, Sunita J.
    Kumar, Vipin
    WASTE BIOREMEDIATION, 2018, : 301 - 312
  • [8] Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion
    Majeed, Afshan
    Abbasi, M. Kaleem
    Hameed, Sohail
    Imran, Asma
    Rahim, Nasir
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [9] Isolation and Characterization of Indigenous Plant Growth-Promoting Rhizobacteria (PGPR) from Cardamom Rhizosphere
    Panchami, Pottekkat Sidharthan
    Geetha Thanuja, Kalyanasundaram
    Karthikeyan, Subburamu
    CURRENT MICROBIOLOGY, 2020, 77 (10) : 2963 - 2981
  • [10] Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals
    Zhu, Donglin
    Ouyang, Liming
    Xu, Zhaohui
    Zhang, Lili
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2015, 17 (10) : 973 - 980