New efficient numerical methods to describe the heat transfer in a solid medium

被引:4
作者
Ponsoda, E. [1 ]
Blanes, S. [1 ]
Bader, P. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Heat conduction; Thermal energy; Matrix boundary value problem; Imbedding formulation; Second order exponential integrators;
D O I
10.1016/j.mcm.2010.11.067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The analysis of heat conduction through a solid with heat generation leads to a linear matrix differential equation with separated boundary conditions. We present a symmetric second order exponential integrator for the numerical integration of this problem using the imbedding formulation. An algorithm to implement this explicit method in an efficient way with respect to the computational cost of the scheme is presented. This method can also be used for nonlinear boundary value problems if the quasilinearization technique is considered. Some numerical examples illustrate the performance of this method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1858 / 1862
页数:5
相关论文
共 7 条
[1]  
Ascher U.M., 1988, NUMERICAL SOLUTIONS
[2]  
Bejan A., 1993, HEAT TRANSFER
[3]   The Magnus expansion and some of its applications [J].
Blanes, S. ;
Casas, F. ;
Oteo, J. A. ;
Ros, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6) :151-238
[4]   A RICCATI TRANSFORMATION METHOD FOR SOLVING LINEAR BVPS .2. COMPUTATIONAL ASPECTS [J].
DIECI, L ;
OSBORNE, MR ;
RUSSELL, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1074-1092
[5]   INVARIANT IMBEDDING, THE BOX SCHEME AND AN EQUIVALENCE BETWEEN THEM [J].
KELLER, HB ;
LENTINI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :942-962
[6]  
Na T.Y., 1979, COMPUTATIONAL METHOD
[7]  
Reid W.T., 1972, Riccati Differential Equations, V86