THE DAUGAVET PROPERTY IN REARRANGEMENT INVARIANT SPACES

被引:0
作者
Acosta, M. D. [1 ]
Kaminska, A. [2 ]
Mastylo, M. [3 ,4 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[4] Polish Acad Sci, Inst Math, Poznan Branch, PL-61614 Poznan, Poland
关键词
Daugavet property; rearrangement invariant spaces; Orlicz spaces; uniform monotonicity; BANACH-LATTICES; MONOTONICITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study rearrangement invariant spaces with the Daugavet property. The main result of this paper states that under mild assumptions the only nonseparable rearrangement invariant space X over an atomless finite measure space with the Daugavet property is L-infinity endowed with its canonical norm. We also prove that a uniformly monotone rearrangement invariant space over an infinite atomless measure space with the Daugavet property is isometric to L-1. As an application we obtain that an Orlicz space over an atomless measure space has the Daugavet property if and only if it is isometrically isomorphic to L-1.
引用
收藏
页码:4061 / 4078
页数:18
相关论文
共 17 条
[1]  
Abramovich Y. A., 2002, GRADUATE STUDIES MAT, V50
[2]  
Acosta MD, 2012, J CONVEX ANAL, V19, P875
[3]  
[Anonymous], 1996, DISS MATH
[4]  
Bennett C., 1988, Pure Appl. Math., V129
[5]  
Daugavet IK., 1963, USP MAT NAUK, V18, P157
[6]   Monotonicity and rotundity properties in Banach lattices [J].
Hudzik, H ;
Kaminska, A ;
Mastylo, M .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (03) :933-950
[7]  
Ivakhno Y, 2007, MATH SCAND, V101, P261
[8]   Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces [J].
Kadets, Vladimir ;
Martin, Miguel ;
Meri, Javier ;
Werner, Dirk .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02) :331-348
[9]   Banach spaces with the Daugavet property [J].
Kadets, VM ;
Shvidkoy, RV ;
Sirotkin, GG ;
Werner, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) :855-873
[10]   The Dunford-Pettis property for symmetric spaces [J].
Kaminska, A ;
Mastylo, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (04) :789-803