A global model reduction approach for 3D fatigue crack growth with confined plasticity

被引:31
作者
Galland, F. [1 ,2 ]
Gravouil, A. [1 ]
Malvesin, E. [2 ]
Rochette, M. [2 ]
机构
[1] Univ Lyon, CNRS, Inst Natl Sci Appl Lyon, LaMCoS,UMR5259, F-69621 Villeurbanne, France
[2] ANSYS France, F-69100 Villeurbanne, France
关键词
Crack propagation; Closure effect; Small scale yielding; Fatigue; Model reduction; Reduced basis; EXTENDED FINITE-ELEMENT; COMPUTATION; TIP;
D O I
10.1016/j.cma.2010.08.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been known for decades that fatigue crack propagation in elastic-plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, raw computations of millions of nonlinear fatigue cycles on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:699 / 716
页数:18
相关论文
共 56 条
[41]   The problem of the least area and the problem of the plateau. [J].
Rado, T .
MATHEMATISCHE ZEITSCHRIFT, 1930, 32 :763-796
[42]   A local multigrid X-FEM strategy for 3-D crack propagation [J].
Rannou, J. ;
Gravouil, A. ;
Baietto-Dubourg, M. C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (04) :581-600
[43]   Three dimensional experimental and numerical multiscale analysis of a fatigue crack [J].
Rannou, Johann ;
Limodin, Nathalie ;
Rethore, Julien ;
Gravouil, Anthony ;
Ludwig, Wolfgang ;
Baietto-Dubourg, Marie-Christine ;
Buffiere, Jean-Yves ;
Combescure, Alain ;
Hild, Francois ;
Roux, Stephane .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) :1307-1325
[44]  
RUIZSABARIEGO J, 2004, P 16 EUR C FRACT SPR
[45]   On the a priori model reduction:: Overview and recent developments [J].
Ryckelynck, D ;
Chinesta, F ;
Cueto, E ;
Ammar, A .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2006, 13 (01) :91-128
[46]   An efficient 'a priori' model reduction for boundary element models [J].
Ryckelynck, D ;
Hermanns, L ;
Chinesta, F ;
Alarcón, E .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (08) :796-801
[47]   A priori hyperreduction method: an adaptive approach [J].
Ryckelynck, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (01) :346-366
[48]   Hyper-reduction of mechanical models involving internal variables [J].
Ryckelynck, D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (01) :75-89
[49]  
Sederberg T. W., 1986, Computer Graphics, V20, P151, DOI 10.1145/15886.15903
[50]  
Simo J, 2000, INTERDISCIPLINARY AP, DOI DOI 10.1007/B98904