A global model reduction approach for 3D fatigue crack growth with confined plasticity

被引:31
作者
Galland, F. [1 ,2 ]
Gravouil, A. [1 ]
Malvesin, E. [2 ]
Rochette, M. [2 ]
机构
[1] Univ Lyon, CNRS, Inst Natl Sci Appl Lyon, LaMCoS,UMR5259, F-69621 Villeurbanne, France
[2] ANSYS France, F-69100 Villeurbanne, France
关键词
Crack propagation; Closure effect; Small scale yielding; Fatigue; Model reduction; Reduced basis; EXTENDED FINITE-ELEMENT; COMPUTATION; TIP;
D O I
10.1016/j.cma.2010.08.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been known for decades that fatigue crack propagation in elastic-plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, raw computations of millions of nonlinear fatigue cycles on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:699 / 716
页数:18
相关论文
共 56 条
[21]  
Gu X., 2003, COMMUN INF SYST, V3, P191, DOI DOI 10.4310/CIS.2003.V3.N3.A4
[22]   Variable amplitude fatigue crack growth, experimental results and modeling [J].
Hamam, R. ;
Pommier, S. ;
Bumbleler, F. .
INTERNATIONAL JOURNAL OF FATIGUE, 2007, 29 (9-11) :1634-1646
[23]   Reduced basis approximation and a posteriori error estimation for stress intensity factors [J].
Huynh, D. B. P. ;
Patera, A. T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (10) :1219-1259
[24]   Dimensional model reduction in non-linear finite element dynamics of solids and structures [J].
Krysl, P ;
Lall, S ;
Marsden, JE .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (04) :479-504
[25]  
Krysl P, 1999, INT J NUMER METH ENG, V44, P767, DOI 10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO
[26]  
2-G
[27]   The LATIN multiscale computational method and the Proper Generalized Decomposition [J].
Ladeveze, P. ;
Passieux, J. -C. ;
Neron, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) :1287-1296
[28]  
Lemaitre J., 1994, Mechanics of solid materials
[29]   A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations [J].
Maday, Yvon ;
Patera, Anthony T. ;
Turinici, Gabriel .
JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) :437-446
[30]   3-DIMENSIONAL CRACK-GROWTH SIMULATION USING BEM [J].
MI, Y ;
ALIABADI, MH .
COMPUTERS & STRUCTURES, 1994, 52 (05) :871-878