A generalization of Schmidt number for multipartite states

被引:6
作者
Guo, Yu [1 ]
Fan, Heng [2 ]
机构
[1] Shanxi Datong Univ, Sch Math & Comp Sci, Datong 037009, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Schmidt number; Schmidt coefficients; multipartite system; entanglement measure; QUANTUM CORRELATION; ENTANGLEMENT;
D O I
10.1142/S0219749915500252
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Schmidt number is of crucial importance in characterizing the bipartite pure states. We explore and propose here a generalization of Schmidt number for states in multipartite systems. It is shown to be entanglement monotonic and valid for both pure and mixed states. In addition, the corresponding generalization of multipartite Schmidt coefficients is introduced. Our approach is applicable for systems with arbitrary number of parties and for arbitrary dimensions.
引用
收藏
页数:10
相关论文
共 28 条
  • [1] Generalized Schmidt decomposition and classification of three-quantum-bit states
    Acín, A
    Andrianov, A
    Costa, L
    Jané, E
    Latorre, JI
    Tarrach, R
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (07) : 1560 - 1563
  • [2] Entanglement Cost in Practical Scenarios
    Buscemi, Francesco
    Datta, Nilanjana
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (13)
  • [3] Classification of tripartite entanglement with one qubit
    Cornelio, MF
    Piza, AFRD
    [J]. PHYSICAL REVIEW A, 2006, 73 (03): : 1 - 9
  • [4] The uniqueness theorem for entanglement measures
    Donald, MJ
    Horodecki, M
    Rudolph, O
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4252 - 4272
  • [5] Three qubits can be entangled in two inequivalent ways
    Dur, W.
    Vidal, G.
    Cirac, J.I.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06): : 062314 - 062311
  • [6] Schmidt measure as a tool for quantifying multiparticle entanglement
    Eisert, Jens
    Briegel, Hans J.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (02): : 1 - 022306
  • [7] Quantify entanglement by concurrence hierarchy
    Fan, H
    Matsumoto, K
    Imai, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (14): : 4151 - 4158
  • [8] Schmidt modes and entanglement
    Fedorov, M. V.
    Miklin, N. I.
    [J]. CONTEMPORARY PHYSICS, 2014, 55 (02) : 94 - 109
  • [9] Classification of Multipartite Entanglement of All Finite Dimensionality
    Gour, Gilad
    Wallach, Nolan R.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [10] Entanglement detection
    Guehne, Otfried
    Toth, Geza
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 474 (1-6): : 1 - 75