Radial-Based oversampling for noisy imbalanced data classification

被引:94
|
作者
Koziarski, Michal [1 ]
Krawczyk, Bartosz [2 ]
Wozniak, Michal [3 ]
机构
[1] AGH Univ Sci & Technol, Dept Elect, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Virginia Commonwealth Univ, Dept Comp Sci, 401 West Main St,POB 843019, Richmond, VA 23284 USA
[3] Wroclaw Univ Sci & Technol, Dept Syst & Comp Networks, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Pattern classification; Machine learning; Imbalanced data; Oversampling; Radial basis functions; Noisy data; SAMPLING METHOD; MINORITY CLASS; SMOTE; IDENTIFICATION; EXAMPLES;
D O I
10.1016/j.neucom.2018.04.089
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced data classification remains a focus of intense research, mostly due to the prevalence of data imbalance in various real-life application domains. A disproportion among objects from different classes may significantly affect the performance of standard classification models. The first problem is the high imbalance ratios that pose a serious learning difficulty and require usage of dedicated methods, capable of alleviating this issue. The second important problem which may appear is noise, which may be accompanying the training data and causing strong deterioration of the classifier performance or increase the time required for its training. Therefore, the desirable classification model should be robust to both skewed data distributions and noise. One of the most popular approaches for handling imbalanced data is oversampling of the minority objects in their neighborhood. In this work we will criticize this approach and propose a novel strategy for dealing with imbalanced data, with particular focus on the noise presence. We propose Radial Based Oversampling (RBO) method, which can find regions in which the synthetic objects from minority class should be generated on the basis of the imbalance distribution estimation with radial basis functions. Results of experiments, carried out on a representative set of benchmark datasets, confirm that the proposed guided synthetic oversampling algorithm offers an interesting alternative to popular state-of-the-art solutions for imbalanced data preprocessing. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [41] On the Role of Cost-Sensitive Learning in Imbalanced Data Oversampling
    Krawczyk, Bartosz
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 180 - 191
  • [42] A MeanShift-guided oversampling with self-adaptive sizes for imbalanced data classification
    Tao, Xinmin
    Zhang, Xiaohan
    Zheng, Yujia
    Qi, Lin
    Fan, Zhiting
    Huang, Shan
    INFORMATION SCIENCES, 2024, 672
  • [43] Selective oversampling approach for strongly imbalanced data
    Gnip P.
    Vokorokos L.
    Drotár P.
    PeerJ Computer Science, 2021, 7 : 1 - 22
  • [44] Selective oversampling approach for strongly imbalanced data
    Gnip, Peter
    Vokorokos, Liberios
    Drotar, Peter
    PEERJ COMPUTER SCIENCE, 2021,
  • [45] Oversampling boosting for classification of imbalanced software defect data
    Li, Guangling
    Wang, Shihai
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4149 - 4154
  • [46] Noise-robust oversampling for imbalanced data classification
    Liu, Yongxu
    Liu, Yan
    Yu, Bruce X. B.
    Zhong, Shenghua
    Hu, Zhejing
    PATTERN RECOGNITION, 2023, 133
  • [47] Perturbation-based oversampling technique for imbalanced classification problems
    Zhang, Jianjun
    Wang, Ting
    Ng, Wing W. Y.
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 773 - 787
  • [48] Evidence-based adaptive oversampling algorithm for imbalanced classification
    Chen-ju Lin
    Florence Leony
    Knowledge and Information Systems, 2024, 66 : 2209 - 2233
  • [49] Traffic accident severity prediction based on oversampling and CNN for imbalanced data
    Shangguan, Anqi
    Mu, Lingxia
    Xie, Guo
    Wang, Chenglan
    Jing, Yang
    Fei, Rong
    Hei, Xinhong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7004 - 7008
  • [50] An oversampling method for wafer map defect pattern classification considering small and imbalanced data
    Kim, Eun-Su
    Choi, Seung-Hyun
    Lee, Dong-Hee
    Kim, Kwang-Jae
    Bae, Young-Mok
    Oh, Young-Chan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 162