Radial-Based oversampling for noisy imbalanced data classification

被引:94
|
作者
Koziarski, Michal [1 ]
Krawczyk, Bartosz [2 ]
Wozniak, Michal [3 ]
机构
[1] AGH Univ Sci & Technol, Dept Elect, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] Virginia Commonwealth Univ, Dept Comp Sci, 401 West Main St,POB 843019, Richmond, VA 23284 USA
[3] Wroclaw Univ Sci & Technol, Dept Syst & Comp Networks, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Pattern classification; Machine learning; Imbalanced data; Oversampling; Radial basis functions; Noisy data; SAMPLING METHOD; MINORITY CLASS; SMOTE; IDENTIFICATION; EXAMPLES;
D O I
10.1016/j.neucom.2018.04.089
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced data classification remains a focus of intense research, mostly due to the prevalence of data imbalance in various real-life application domains. A disproportion among objects from different classes may significantly affect the performance of standard classification models. The first problem is the high imbalance ratios that pose a serious learning difficulty and require usage of dedicated methods, capable of alleviating this issue. The second important problem which may appear is noise, which may be accompanying the training data and causing strong deterioration of the classifier performance or increase the time required for its training. Therefore, the desirable classification model should be robust to both skewed data distributions and noise. One of the most popular approaches for handling imbalanced data is oversampling of the minority objects in their neighborhood. In this work we will criticize this approach and propose a novel strategy for dealing with imbalanced data, with particular focus on the noise presence. We propose Radial Based Oversampling (RBO) method, which can find regions in which the synthetic objects from minority class should be generated on the basis of the imbalance distribution estimation with radial basis functions. Results of experiments, carried out on a representative set of benchmark datasets, confirm that the proposed guided synthetic oversampling algorithm offers an interesting alternative to popular state-of-the-art solutions for imbalanced data preprocessing. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 50 条
  • [31] Distance-based arranging oversampling technique for imbalanced data
    Dai, Qi
    Liu, Jian-wei
    Zhao, Jia-Liang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02) : 1323 - 1342
  • [32] Importance-SMOTE: a synthetic minority oversampling method for noisy imbalanced data
    Liu, Jie
    SOFT COMPUTING, 2022, 26 (03) : 1141 - 1163
  • [33] Counterfactual-based minority oversampling for imbalanced classification
    Wang, Shu
    Luo, Hao
    Huang, Shanshan
    Li, Qingsong
    Liu, Li
    Su, Guoxin
    Liu, Ming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [34] Oversampling techniques for imbalanced data in regression
    Belhaouari, Samir Brahim
    Islam, Ashhadul
    Kassoul, Khelil
    Al-Fuqaha, Ala
    Bouzerdoum, Abdesselam
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [35] Distance-based arranging oversampling technique for imbalanced data
    Qi Dai
    Jian-wei Liu
    Jia-Liang Zhao
    Neural Computing and Applications, 2023, 35 : 1323 - 1342
  • [36] Binary imbalanced data classification based on diversity oversampling by generative models
    Zhai, Junhai
    Qi, Jiaxing
    Shen, Chu
    INFORMATION SCIENCES, 2022, 585 : 313 - 343
  • [37] Hybrid Oversampling Technique Based on Star Topology and Rejection Methodology for Classifying Imbalanced Data
    Lee, Chaekyu
    Kim, Jaekwang
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1217 - 1226
  • [38] Potential Anchoring for imbalanced data classification
    Koziarski, Michal
    PATTERN RECOGNITION, 2021, 120
  • [39] An efficient method to determine sample size in oversampling based on classification complexity for imbalanced data
    Lee, Dohyun
    Kim, Kyoungok
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184 (184)
  • [40] A hierarchical heterogeneous ant colony optimization based oversampling algorithm using feature similarity for classification of imbalanced data
    Sreeja, N. K.
    Sreelaja, N. K.
    APPLIED SOFT COMPUTING, 2024, 166