Global well-posedness and blow-up criterion for the periodic quasi-geostrophic equations in Lei-Lin-Gevrey spaces

被引:3
|
作者
Benhamed, Moez [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR03ES04, Tunis 2092, Tunisia
关键词
Blow-up result; Global existence; Lei-Lin-Gevrey spaces; subcritical case; surface quasi-geostrophic equations; ASYMPTOTIC-BEHAVIOR; FLOWS;
D O I
10.1002/mma.4543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a periodic 2-dimensional quasi-geostrophic equations with subcritical dissipation. We show the global existence and uniqueness of the solution theta is an element of C ([0, T], gamma(1-2 alpha)(a,sigma)(T-2)) for small initial data in the Lei-Lin-Gevrey spaces. gamma(1-2 alpha)(a,sigma)(T-2). Moreover, we establish an exponential type explosion in finite time of this solution.
引用
收藏
页码:7488 / 7509
页数:22
相关论文
共 50 条