Global well-posedness and blow-up criterion for the periodic quasi-geostrophic equations in Lei-Lin-Gevrey spaces

被引:3
|
作者
Benhamed, Moez [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR03ES04, Tunis 2092, Tunisia
关键词
Blow-up result; Global existence; Lei-Lin-Gevrey spaces; subcritical case; surface quasi-geostrophic equations; ASYMPTOTIC-BEHAVIOR; FLOWS;
D O I
10.1002/mma.4543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a periodic 2-dimensional quasi-geostrophic equations with subcritical dissipation. We show the global existence and uniqueness of the solution theta is an element of C ([0, T], gamma(1-2 alpha)(a,sigma)(T-2)) for small initial data in the Lei-Lin-Gevrey spaces. gamma(1-2 alpha)(a,sigma)(T-2). Moreover, we establish an exponential type explosion in finite time of this solution.
引用
收藏
页码:7488 / 7509
页数:22
相关论文
共 50 条
  • [21] Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier–Besov spaces
    Achraf Azanzal
    Chakir Allalou
    Said Melliani
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [22] ON THE LAGRANGIAN AVERAGED EULER EQUATIONS: LOCAL WELL-POSEDNESS AND BLOW-UP CRITERION
    Yu, Xinwei
    Zhai, Zhichun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1809 - 1823
  • [23] STUDY OF THE BLOW UP OF THE MAXIMAL SOLUTION TO THE THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SYSTEM IN LEI-LIN-GEVREY SPACES
    Selmi, Ridha
    Benameur, Jamel
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (03): : 421 - 438
  • [24] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    杨凌燕
    李晓光
    吴永洪
    Louis CACCETTA
    Acta Mathematica Scientia(English Series), 2017, 37 (04) : 941 - 948
  • [25] Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces.
    Azanzal, Achraf
    Allalou, Chakir
    Melliani, Said
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 23 - 48
  • [26] Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces.
    Achraf Azanzal
    Chakir Allalou
    Said Melliani
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 23 - 48
  • [27] ON THE WELL-POSEDNESS OF THE INVISCID MULTI-LAYER QUASI-GEOSTROPHIC EQUATIONS
    Chen, Qingshan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3215 - 3237
  • [28] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [29] Global well-posedness for a slightly supercritical surface quasi-geostrophic equation
    Dabkowski, Michael
    Kiselev, Alexander
    Vicol, Vlad
    NONLINEARITY, 2012, 25 (05) : 1525 - 1535
  • [30] Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier-Besov spaces
    Azanzal, Achraf
    Allalou, Chakir
    Melliani, Said
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):