Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting

被引:82
作者
Li, Xianglin [1 ]
Bassi, Prince Saurabh [2 ]
Boix, Pablo P. [1 ]
Fang, Yanan [1 ]
Wong, Lydia Helena [1 ,2 ]
机构
[1] Nanyang Technol Univ, Energy Res Inst, Singapore 637553, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
photoelectrochemical cells (PEC); hematite; atomic layer deposition (ALD); nanorods; TiO2; surface treatment; ATOMIC LAYER DEPOSITION; FERRIC-OXIDE; OXIDATION; FILMS; ALPHA-FE2O3; FE2O3; PHOTOELECTROCHEMISTRY; PERFORMANCE; ELECTRODES; ARRAYS;
D O I
10.1021/acsami.5b01394
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrathin TiO2 is deposited on conventional hydrothermal grown hematite nanorod arrays by atomic layer deposition (ALD). Significant photoelectrochemical water oxidation performance improvement is observed when the ALD TiO2-treated samples are annealed at 650 degrees C or higher temperatures. The electrochemical impedance spectroscopy (EIS) study shows a surface trap-mediated charge transfer process exists at the hematite electrolyte interface. Thus, one possible reason for the improvement could be the increased surface states at the hematite surface, which leads to better charge separation, less electron hole recombination, and hence, greater improvement of photocurrent. Our Raman study shows the increase in surface defects on the ALD TiO2-coated hematite sample after being annealed at 650 degrees C or higher temperatures. A photo current of 1.9 mA cm(-2) at 1.23 V (vs RHE) with a maximum of 2.5 mA cm(-2) at 1.8 V (vs RHE) in 1 M NaOH under AM 1.5 simulated solar illumination is achieved in optimized deposition and annealing conditions.
引用
收藏
页码:16960 / 16966
页数:7
相关论文
共 44 条
[1]   Iron based photoanodes for solar fuel production [J].
Bassi, Prince Saurabh ;
Gurudayal ;
Wong, Lydia Helena ;
Barber, James .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) :11834-11842
[2]   Photoelectrochemical studies of oriented nanorod thin films of hematite [J].
Beermann, N ;
Vayssieres, L ;
Lindquist, SE ;
Hagfeldt, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2456-2461
[3]  
Bersani D, 1999, J RAMAN SPECTROSC, V30, P355, DOI 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO
[4]  
2-C
[5]   Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction [J].
Cao, Dapeng ;
Luo, Wenjun ;
Feng, Jianyong ;
Zhao, Xin ;
Li, Zhaosheng ;
Zou, Zhigang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :752-759
[6]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[7]   ELECTROCHEMISTRY AND PHOTOELECTROCHEMISTRY OF IRON(III) OXIDE [J].
DAREEDWARDS, MP ;
GOODENOUGH, JB ;
HAMNETT, A ;
TREVELLICK, PR .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1983, 79 :2027-2041
[8]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[9]  
2-B
[10]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+