Theoretical Studies of High-Pressure Phases, Electronic Structure, and Vibrational Properties of NaNH2

被引:18
|
作者
Zhong, Yan [2 ]
Zhou, Huai-Ying [1 ,2 ]
Hu, Chao-Hao [1 ,3 ]
Wang, Dian-Hui [1 ]
Oganov, Artem R. [4 ,5 ,6 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guilin 541004, Peoples R China
[2] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[3] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China
[4] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[6] Moscow MV Lomonosov State Univ, Dept Geol, Moscow 119992, Russia
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
HYDROGEN DESORPTION; STORAGE; TRANSITION; DYNAMICS; SPECTRA; AMIDE; RAMAN;
D O I
10.1021/jp300455j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermodynamically stable phases of sodium amide (NaNH2) at pressures up to 20 GPa have been determined using the ab initio evolutionary structure prediction. We find that the ground-state phase alpha-NaNH2 (orthorhombic, Fddd) first transforms into beta-NaNH2 (orthorhombic, P2(1)2(1)2) at 2.2 GPa; then, gamma-NaNH2 (monoclinic, C2/c) becomes stable at 9.4 GPa. In addition to strong ionic bonding between Na+ and [NH2](-) ions and covalent bonding between H and N in NH2 groups, the N- H center dot center dot center dot N hydrogen bonding between neighboring NH2 groups could not be ignored anymore in the high-pressure beta-NaNH2, as suggested by the analysis of charge density distribution and structural and vibrational properties. The covalent N H bonds in the high-pressure phase of NaNH2 are weakened by additional hydrogen bonding, which could be favorable for the hydrogen desorption,
引用
收藏
页码:8387 / 8393
页数:7
相关论文
共 50 条
  • [1] Structural transitions in NaNH2 via recrystallization under high pressure
    Huang, Yanping
    Haung, Xiaoli
    Wang, Xin
    Zhang, Wenting
    Zhou, Di
    Zhou, Qiang
    Liu, Bingbing
    Cui, Tian
    CHINESE PHYSICS B, 2019, 28 (09)
  • [2] High-pressure phases, vibrational properties, and electronic structure of Ne(He)2 and Ar(He)2: A first-principles study
    Cazorla, C.
    Errandonea, D.
    Sola, E.
    PHYSICAL REVIEW B, 2009, 80 (06)
  • [3] Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles
    Rao, E. Nageswara
    Ravi, P.
    Tewari, Surya P.
    Rao, S. Venugopal
    JOURNAL OF MOLECULAR STRUCTURE, 2013, 1043 : 121 - 131
  • [4] Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4
    Bandiello, E.
    Errandonea, D.
    Martinez-Garcia, D.
    Santamaria-Perez, D.
    Manjon, F. J.
    PHYSICAL REVIEW B, 2012, 85 (02)
  • [5] Crystal structure and electronic properties of BrF under high-pressure
    Lang, Hongyun
    Shao, Xuepeng
    Wang, Xuying
    Wang, Weihua
    Bao, Xin
    Xing, Shiyu
    Sun, Yong
    Li, Peifang
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 250 - 257
  • [6] High-pressure vibrational properties of dense rubidium
    Santoro, Mario
    Colognesi, Daniele
    Monserrat, Bartomeu
    Gregoryanz, Eugene
    Ulivi, Lorenzo
    Gorelli, Federico A.
    PHYSICAL REVIEW B, 2018, 98 (10)
  • [7] New high-pressure phases of MoSe2 and MoTe2
    Kohulak, Oto
    Martonak, Roman
    PHYSICAL REVIEW B, 2017, 95 (05)
  • [8] Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study
    Kurkcu, Cihan
    Merdan, Ziya
    Ozturk, Hulya
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 90 (13) : 2550 - 2555
  • [9] Interplay between local structure, vibrational and electronic properties on CuO under pressure
    Cuartero, Vera
    Monteseguro, Virginia
    Otero-de-la-Roza, Alberto
    El Idrissi, Mourad
    Mathon, Olivier
    Shinmei, Toru
    Irifune, Tetsuo
    Sanson, Andrea
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (42) : 24299 - 24309
  • [10] Structural, electronic and vibrational properties of InN under high pressure
    Saoud, Fatma Saad
    Plenet, Jean Claude
    Henini, Mohamed
    PHYSICA B-CONDENSED MATTER, 2012, 407 (06) : 1008 - 1013