Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

被引:215
|
作者
Alonso-Gonzalez, P. [1 ]
Albella, P. [1 ,2 ,3 ]
Schnell, M. [1 ]
Chen, J. [1 ,2 ,3 ]
Huth, F. [1 ,4 ]
Garcia-Etxarri, A. [2 ,3 ,5 ,6 ]
Casanova, F. [1 ,6 ]
Golmar, F. [1 ,7 ]
Arzubiaga, L. [1 ]
Hueso, L. E. [1 ,6 ]
Aizpurua, J. [2 ,3 ]
Hillenbrand, R. [1 ,6 ]
机构
[1] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[2] Ctr Fis Mat CSIC UPV EHU, San Sebastian 20018, Spain
[3] DIPC, San Sebastian 20018, Spain
[4] Neaspec GmbH, D-82152 Munich, Germany
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[7] INTI CONICET, San Martin, Bs As, Argentina
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
欧洲研究理事会;
关键词
RAMAN-SCATTERING; NEAR-FIELD; SPECTROSCOPY; MOLECULES; NANOPARTICLE; RESONANCES; SPECTRA;
D O I
10.1038/ncomms1674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] "Rings of saturn-like" nanoarrays with high number density of hot spots for surface-enhanced Raman scattering
    Dai, Zhigao
    Mei, Fei
    Xiao, Xiangheng
    Liao, Lei
    Fu, Lei
    Wang, Jiao
    Wu, Wei
    Guo, Shishang
    Zhao, Xinyue
    Li, Wei
    Ren, Feng
    Jiang, Changzhong
    APPLIED PHYSICS LETTERS, 2014, 105 (03)
  • [32] Single-molecule surface-enhanced Raman scattering: Current status and future perspective
    Kim, Zee Hwan
    FRONTIERS OF PHYSICS, 2014, 9 (01) : 25 - 30
  • [33] Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach
    Luo, Yu
    Aubry, Alexandre
    Pendry, J. B.
    PHYSICAL REVIEW B, 2011, 83 (15):
  • [34] Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering
    Kim, Kwan
    Shin, Dongha
    Kim, Kyung Lock
    Shin, Kuan Soo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (15) : 3747 - 3752
  • [35] Surface-Enhanced Raman Scattering inside Metal Nanoshells
    Zhang, Peng
    Guo, Yanyan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) : 3808 - +
  • [36] Surface-enhanced Raman scattering: facts and inline trends
    Hossain, Mohammad Kamal
    Ozaki, Yukihiro
    CURRENT SCIENCE, 2009, 97 (02): : 192 - 201
  • [37] Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto-metal nanoprobe assembling
    Zhang, Lu
    Dong, Wen-Fei
    Tang, Zhi-Yong
    Song, Jun-Feng
    Xia, Hong
    Sun, Hong-Bo
    OPTICS LETTERS, 2010, 35 (19) : 3297 - 3299
  • [38] The theory of surface-enhanced Raman scattering
    Lombardi, John R.
    Birke, Ronald L.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (14)
  • [39] Raman and surface-enhanced Raman scattering (SERS) biosensing
    Prochazka, M.
    OPTICAL SENSORS 2013, 2013, 8774
  • [40] Experimental tests of surface-enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory
    Heeg, Sebastian
    Mueller, Niclas S.
    Wasserroth, Soren
    Kusch, Patryk
    Reich, Stephanie
    JOURNAL OF RAMAN SPECTROSCOPY, 2021, 52 (02) : 310 - 322