The endoderm and myocardium join forces to drive early heart tube assembly

被引:28
作者
Aleksandrova, Anastasiia [1 ]
Czirok, Andras [1 ,2 ]
Kosa, Edina [1 ]
Galkin, Oleksandr [1 ]
Cheuvront, Tracey J. [1 ]
Rongish, Brenda J. [1 ]
机构
[1] Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66160 USA
[2] Eotvos Lorand Univ, Dept Biol Phys, Budapest, Hungary
关键词
Myocardium; Endoderm; Mechanics; Modeling; CARDIA-BIFIDA; CHICK-EMBRYOS; MIGRATION; ORGANIZATION; FIBRONECTIN; DYNAMICS; ANTERIOR;
D O I
10.1016/j.ydbio.2015.04.016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Formation of the muscular layer of the heart, the myocardium, involves the medial movement of bilateral progenitor fields; driven primarily by shortening of the endoderm during foregut formation. Using a combination of time-lapse imaging, microsurgical perturbations and computational modeling, we show that the speed of the medial-ward movement of the myocardial progenitors is similar, but not identical to that of the adjacent endoderm. Further, the extracellular matrix microenvironment separating the two germ layers also moves with the myocardium, indicating that collective tissue motion and not cell migration drives tubular heart assembly. Importantly, as myocardial cells approach the midline, they perform distinct anterior-directed movements relative to the endoderm. Based on the analysis of microincision experiments and computational models, we propose two characteristic, autonomous morphogenetic activities within the early myocardium: 1) an active contraction of the medial portion of the heart field and 2) curling- the tendency of the unconstrained myocardial tissue to form a spherical surface with a concave ventral side. In the intact embryo, these deformations are constrained by the endoderm and the adjacent mesoderm, nevertheless the corresponding mechanical stresses contribute to the proper positioning of myocardial primordia. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 39 条
  • [1] Patterning of the heart field in the chick
    Abu-Issa, Radwan
    Kirby, Margaret L.
    [J]. DEVELOPMENTAL BIOLOGY, 2008, 319 (02) : 223 - 233
  • [2] Convective tissue movements play a major role in avian endocardial morphogenesis
    Aleksandrova, Anastasiia
    Czirok, Andras
    Szabo, Andras
    Filla, Michael B.
    Hossain, M. Julius
    Whelan, Paul F.
    Lansford, Rusty
    Rongish, Brenda J.
    [J]. DEVELOPMENTAL BIOLOGY, 2012, 363 (02) : 348 - 361
  • [3] Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo
    Arrington, Cammon B.
    Yost, H. Joseph
    [J]. DEVELOPMENT, 2009, 136 (18): : 3143 - 3152
  • [4] Functional modulation of cardiac form through regionally confined cell shape changes
    Auman, Heidi J.
    Coleman, Hope
    Riley, Heather E.
    Olale, Felix
    Tsai, Huai-Jen
    Yelon, Deborah
    [J]. PLOS BIOLOGY, 2007, 5 (03) : 604 - 615
  • [5] Bellairs R., 2005, The atlas of chick development
  • [6] Heart development: molecular insights into cardiac specification and early morphogenesis
    Brand, T
    [J]. DEVELOPMENTAL BIOLOGY, 2003, 258 (01) : 1 - 19
  • [7] Dynamic positional fate map of the primary heart-forming region
    Cui, Cheng
    Cheuvront, Tracey J.
    Lansford, Rusty D.
    Moreno-Rodriguez, Ricardo A.
    Schultheiss, Thomas M.
    Rongish, Brenda J.
    [J]. DEVELOPMENTAL BIOLOGY, 2009, 332 (02) : 212 - 222
  • [8] Extracellular matrix dynamics during vertebrate axis formation
    Czirók, A
    Rongish, BJ
    Little, CD
    [J]. DEVELOPMENTAL BIOLOGY, 2004, 268 (01) : 111 - 122
  • [9] Multi-field 3D scanning light microscopy of early embryogenesis
    Czirók, A
    Rupp, PA
    Rongish, BJ
    Little, CD
    [J]. JOURNAL OF MICROSCOPY, 2002, 206 : 209 - 217
  • [10] Extracellular matrix macroassembly dynamics in early vertebrate embryos
    Czirok, Andras
    Zamir, Evan A.
    Filla, Michael B.
    Little, Charles D.
    Rongish, Brenda J.
    [J]. CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOL 73, 2006, 73 : 237 - +