Selecting the precision parameter prior in Dirichlet process mixture models

被引:13
作者
Murugiah, Siva [1 ]
Sweeting, Trevor [1 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
关键词
Bayesian nonparametrics; Dirichlet process; Empirical Bayes; Mixture models;
D O I
10.1016/j.jspi.2012.02.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Dirichlet process mixture models in which the observed clusters in any particular dataset are not viewed as belonging to a finite set of possible clusters but rather as representatives of a latent structure in which objects belong to one of a potentially infinite number of clusters. As more information is revealed the number of inferred clusters is allowed to grow. The precision parameter of the Dirichlet process is a crucial parameter that controls the number of clusters. We develop a framework for the specification of the hyperparameters associated with the prior for the precision parameter that can be used both in the presence or absence of subjective prior information about the level of clustering. Our approach is illustrated in an analysis of clustering brands at the magazine Which?. The results are compared with the approach of Dorazio (2009) via a simulation study. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1947 / 1959
页数:13
相关论文
共 50 条
  • [21] Enhancing Cluster Accuracy in Diabetes Multimorbidity With Dirichlet Process Mixture Models
    Kita, Francis John
    Gaddes, Srinivasa Rao
    Kirigiti, Peter Josephat
    IEEE ACCESS, 2025, 13 : 6422 - 6439
  • [22] MCMC Sampling Estimation of Poisson-Dirichlet Process Mixture Models
    Qiu, Xiang
    Yuan, Linlin
    Zhou, Xueqin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [23] A DIRICHLET PROCESS MIXTURE OF HIDDEN MARKOV MODELS FOR PROTEIN STRUCTURE PREDICTION
    Lennox, Kristin P.
    Dahl, David B.
    Vannucci, Marina
    Day, Ryan
    Tsai, Jerry W.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (02) : 916 - 942
  • [24] Distributional results relating to the posterior of a Dirichlet process prior
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2019, 149 : 146 - 152
  • [25] Information value in nonparametric Dirichlet-process Gaussian-process (DPGP) mixture models
    Wei, Hongchuan
    Lu, Wenjie
    Zhu, Pingping
    Ferrari, Silvia
    Liu, Miao
    Klein, Robert H.
    Omidshafiei, Shayegan
    How, Jonathan P.
    AUTOMATICA, 2016, 74 : 360 - 368
  • [26] Nonparametric Localized Feature Selection via a Dirichlet Process Mixture of Generalized Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 25 - 33
  • [27] A tutorial on Dirichlet process mixture modeling
    Li, Yuelin
    Schofield, Elizabeth
    Gonen, Mithat
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 91 : 128 - 144
  • [28] Online damage detection of cutting tools using Dirichlet process mixture models?
    Wickramarachchi, Chandula T.
    Rogers, Timothy J.
    McLeay, Thomas E.
    Leahy, Wayne
    Cross, Elizabeth J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 180
  • [29] A note on the scale parameter of the Dirichlet process
    Walker, SG
    Mallick, BK
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1997, 25 (04): : 473 - 479
  • [30] Dirichlet Process Mixture of Mixtures Model for Unsupervised Subword Modeling
    Heck, Michael
    Sakti, Sakriani
    Nakamura, Satoshi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2018, 26 (11) : 2027 - 2042