Spectroscopic studies of Co2TiO4 and Co3O4 two-phase composites

被引:26
作者
Nayak, S. [1 ]
Dasari, K. [2 ]
Joshi, D. C. [1 ]
Pramanik, P. [1 ]
Palai, R. [2 ]
Sathe, V. [3 ]
Chauhan, R. N. [4 ,5 ]
Tiwari, N. [4 ,5 ]
Thota, S. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Gauhati 781039, Assam, India
[2] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA
[3] UGC DAE Consortium Sci Res, Univ Campus, Indore 452017, Madhya Pradesh, India
[4] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[5] Natl Chiao Tung Univ, Display Inst, Hsinchu 30010, Taiwan
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2016年 / 253卷 / 11期
基金
美国国家科学基金会;
关键词
antiferromagnetism; Co3O4; Co2TiO4; Raman spectroscopy; Solid solutions; spinels; vibrational modes; LOW-TEMPERATURE OXIDATION; SPIN-GLASS BEHAVIOR; MAGNETIC-PROPERTIES; OPTICAL-PROPERTIES; COBALT OXIDES; STRUCTURAL-CHARACTERIZATION; THERMAL-DECOMPOSITION; CO; SURFACE; FILMS;
D O I
10.1002/pssb.201600295
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this article, we report a comparative analysis of various spectroscopic studies including low-temperature (25T300K) Raman spectroscopy of cobalt-orthotitanate (Co2TiO4) and tricobalt-tetraoxide (Co3O4), and their solid solutions (1-x) Co3O4+x of Co2TiO4 (0x1 (100wt.%)). For all the lower and intermediate compositions, five Raman-active modes were recognized at 689,618,518,480, and 195cm-1 that are associated with A1g, Eg, and 3F2g phonon symmetries. Conversely, pure Co2TiO4 exhibits a broad spectrum of width approximate to 93.3cm-1 without any signatures of F2g(3) mode. At low-temperatures (down to 25K) the A1g and F2gpeaks of both Co2TiO4 and Co3O4 shift toward the high-frequency side with anomalies across the ferrimagnetic Neel temperature (TN approximate to 48 +/- 5K) and antiferromagnetic Neel temperature (TN approximate to 30 +/- 10 K), respectively. All the investigated samples exhibit two distinct bands at 576cm-1 (B1) and 665cm-1 (B2) in the Fourier transform infrared spectra recorded at 300 +/- 10 K, associated with the vibrational stretching of the metal-oxygen bonds of length approximate to 195.8pm (B-O) and approximate to 185.4pm (A-O), respectively. The intensity of these sharp bands gradually decreases as the crystal structure transforms from normal-spinel (a=8.07 angstrom) to inverse-spinel structure (a=8.45 angstrom). The X-ray photoelectron spectroscopy (XPS) studies revealed that the Ti was incorporated into the octahedral B-sites of inverse-spinel structure of Co2TiO4. Interestingly, the XPS spectra of Co2TiO4 provide evidence of the trivalent character of Ti instead of tetravalent cationic configuration together with a weak Co3+ character at the octahedral sites. These results are discussed in terms of the binding-energy (BE) difference between the O-1s and Ti-2p3/2 ([O-Ti-2p3/2]=BE(O-1s) -BE(Ti-2p3/2)) and the mean chemical bond length l[Ti-O]. The peculiarities of all these results in consonance with the crystal-structure (bond angles and bond lengths) and electron-spin-resonance studies are discussed in detail.
引用
收藏
页码:2270 / 2282
页数:13
相关论文
共 50 条
[31]   High electrochemical performance of spinel Mn3O4 over Co3O4 nanocrystals [J].
Shaik, Dadamiah P. M. D. ;
Kumar, M. V. Sasi ;
Reddy, P. Naresh Kumar ;
Hussain, O. M. .
JOURNAL OF MOLECULAR STRUCTURE, 2021, 1241
[32]   Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst [J].
Liu, Chu-Feng ;
He, Lin-Cong ;
Wang, Xu-Fang ;
Chen, Jian ;
Lu, Ji-Qing ;
Luo, Meng-Fei .
MOLECULAR CATALYSIS, 2022, 524
[33]   MXene/Co3O4 Layered Composites for Acetone Gas Sensing [J].
Zhang, Chunmei ;
Wu, Xuanyu ;
Zha, Chengyuan ;
Li, Lei ;
Lu, Hao ;
Chen, Ting ;
Zhang, Shan ;
Xing, Huanhuan ;
Zhao, Mengdi ;
Sun, Wei ;
Chen, Wei ;
Guo, Chunxian ;
Li, Chang Ming .
ACS APPLIED NANO MATERIALS, 2024, 7 (17) :20690-20699
[34]   Adsorption studies of ethanol and butanol on Co3O4 nanostructures - A DFT study [J].
Nagarajan, V. ;
Chandiramouli, R. .
CHEMICAL PHYSICS, 2017, 491 :61-68
[35]   Reactive interaction of isopropanol with Co3O4 (111) and Pt/Co3O4(111) model catalysts [J].
Hohner, Chantal ;
Ronovsky, Michal ;
Brummel, Olaf ;
Skala, Tomas ;
Smid, Bretislav ;
Tsud, Nataliya ;
Vorokhta, Mykhailo ;
Prince, Kevin C. ;
Myslivecek, Josef ;
Johanek, Viktor ;
Lykhach, Yaroslava ;
Libuda, Joerg .
JOURNAL OF CATALYSIS, 2021, 398 :171-184
[36]   Controlled Synthesis, Characterization, and Photocatalytic Application of Co2TiO4 Nanoparticles [J].
Majid Ramezani ;
S. Mostafa Hosseinpour-Mashkani .
Journal of Electronic Materials, 2017, 46 :1371-1377
[37]   Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously [J].
Lou, Yang ;
Ma, Jian ;
Cao, Xiaoming ;
Wang, Li ;
Dai, Qiguang ;
Zhao, Zhenyang ;
Cai, Yafeng ;
Zhan, Wangcheng ;
Guo, Yanglong ;
Hu, P. ;
Lu, Guanzhong ;
Guo, Yun .
ACS CATALYSIS, 2014, 4 (11) :4143-4152
[38]   Magnetic compensation, field-dependent magnetization reversal, and complex magnetic ordering in Co2TiO4 [J].
Nayak, S. ;
Thota, S. ;
Joshi, D. C. ;
Krautz, M. ;
Waske, A. ;
Behler, A. ;
Eckert, J. ;
Sarkar, T. ;
Andersson, M. S. ;
Mathieu, R. ;
Narang, V. ;
Seehra, M. S. .
PHYSICAL REVIEW B, 2015, 92 (21)
[39]   Sm and Er partial alternatives of Co in Co3O4 nanoparticles: Probing the physical properties [J].
Abdallah, A. M. ;
Awad, R. .
PHYSICA B-CONDENSED MATTER, 2021, 608
[40]   Crystal Facet Effects on Nanomagnetism of Co3O4 [J].
Li, Wenxian ;
Wang, Yan ;
Cui, Xiang Yuan ;
Yu, Shangjia ;
Li, Ying ;
Hu, Yemin ;
Zhu, Mingyuan ;
Zheng, Rongkun ;
Ringer, Simon P. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :19235-19247