Three Categories Customer Churn Prediction Based on the Adjusted Real Adaboost

被引:4
作者
Liu, Miao [1 ,2 ]
Qiao, Xiu-quan [2 ]
Xu, Wang-li [1 ]
机构
[1] Renmin Univ China, Sch Stat, Beijing 100872, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100088, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Churn prediction; Customer heterogeneity; Real adaboost; Unbalanced data; BOOSTING ALGORITHMS; CLASSIFICATION; INDUSTRY; MODELS;
D O I
10.1080/03610918.2011.589732
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is necessary for enterprises to establish a customer churn management system. In this article, we take the heterogeneity into consideration and divide the churn people into two classes according to the data characteristics. Moreover, we try to modify the bias of multi-class unbalanced data classification. Then we propose a new method based on Real Adaboost for the problem. The proposed method takes the within-group error into consideration and creates another view of reweighing the cases. Empirical study on our sample data shows that the new method performs better than the other method.
引用
收藏
页码:1548 / 1562
页数:15
相关论文
共 50 条
  • [41] Machine learning based customer churn prediction in home appliance rental business
    Suh, Youngjung
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [42] Attribute Selection and Customer Churn Prediction in Telecom Industry
    Umayaparvathi, V.
    Iyakutti, K.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), 2016, : 84 - 90
  • [43] Innovative customer churn prediction in collaborative products innovation
    Li, Fei
    Yang, Yu
    Su, Jia-Fu
    Xie, Jian-Zhong
    Chen, Qian
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2015, 21 (01): : 40 - 47
  • [44] Customer churn prediction using data mining approach
    Qaisi, Laila M.
    Rodan, Ali
    Qaddoum, Kefaya
    Al-Sayyed, Rizik
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 348 - 352
  • [45] A comparison of machine learning techniques for customer churn prediction
    Vafeiadis, T.
    Diamantaras, K. I.
    Sarigiannidis, G.
    Chatzisavvas, K. Ch.
    SIMULATION MODELLING PRACTICE AND THEORY, 2015, 55 : 1 - 9
  • [46] Ensembles of Probability Estimation Trees for Customer Churn Prediction
    De Bock, Koen W.
    Van den Poel, Dirk
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT II, PROCEEDINGS, 2010, 6097 : 57 - 66
  • [47] AdaBoost Semiparametric Model Averaging Prediction for Multiple Categories
    Li, Jialiang
    Lv, Jing
    Wan, Alan T. K.
    Liao, Jun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 495 - 509
  • [48] Profit-based churn prediction based on Minimax Probability Machines
    Maldonado, Sebastian
    Lopez, Julio
    Vairetti, Carla
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (01) : 273 - 284
  • [49] Building comprehensible customer churn prediction models with advanced rule induction techniques
    Verbeke, Wouter
    Martens, David
    Mues, Christophe
    Baesens, Bart
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 2354 - 2364
  • [50] Large-scale Ensemble Model for Customer Churn Prediction in Search Ads
    Wang, Qiu-Feng
    Xu, Mirror
    Hussain, Amir
    COGNITIVE COMPUTATION, 2019, 11 (02) : 262 - 270