An efficient propagation scheme for the time-dependent Schrodinger equation in the velocity gauge

被引:1
|
作者
Muller, HG [1 ]
机构
[1] FOM, Inst Atom & Mol Phys, NL-1098 SJ Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A numerical algorithm is presented For solving the three-dimensional time-dependent one-particle Schrodinger equation of an atom subject to electromagnetic radiation. The algorithm is optimized for efficiency, and to run a converged calculation of a realistic situation, such as a noble gas atom and a near-infrared laser, takes about 25 min on a PC, Application to truly three-dimensional problems, such as photoionization by fields of arbitrary polarization, delivers an acceptable performance (6 h on a typical PC for calculating the photoelectron spectrum from a 20-cycle pulse).
引用
收藏
页码:138 / 148
页数:11
相关论文
共 50 条
  • [11] A COMPARISON OF DIFFERENT PROPAGATION SCHEMES FOR THE TIME-DEPENDENT SCHRODINGER-EQUATION
    LEFORESTIER, C
    BISSELING, RH
    CERJAN, C
    FEIT, MD
    FRIESNER, R
    GULDBERG, A
    HAMMERICH, A
    JOLICARD, G
    KARRLEIN, W
    MEYER, HD
    LIPKIN, N
    RONCERO, O
    KOSLOFF, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (01) : 59 - 80
  • [12] Laguerre scheme: Another member for propagating the time-dependent Schrodinger equation
    Hu, XG
    PHYSICAL REVIEW E, 1999, 59 (02): : 2471 - 2474
  • [13] Laguerre scheme: another member for propagating the time-dependent Schrodinger equation
    Hu, Xu-Guang
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-B):
  • [14] A TIME-DEPENDENT SCHRODINGER-EQUATION
    KRANOLD, HU
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) : 2345 - 2347
  • [15] On the derivation of the time-dependent equation of Schrodinger
    Briggs, JS
    Rost, JM
    FOUNDATIONS OF PHYSICS, 2001, 31 (04) : 693 - 712
  • [16] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [17] High order efficient splittings for the semiclassical time-dependent Schrodinger equation
    Blanes, Sergio
    Gradinaru, Vasile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
  • [18] Global error control of the time-propagation for the Schrodinger equation with a time-dependent Hamiltonian
    Kormann, K.
    Holmgren, S.
    Karlsson, H. O.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2011, 2 (02) : 178 - 187
  • [19] Efficient multiscale methods for the semiclassical Schrodinger equation with time-dependent potentials
    Chen, Jingrun
    Li, Sijing
    Zhang, Zhiwen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [20] Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation
    Shen, Jing
    Sha, Wei E. I.
    Kuang, Xiaojing
    Hu, Jinhua
    Huang, Zhixiang
    Wu, Xianliang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2018, 66 : 109 - 118