The complexity of the collection of measure-distal transformations

被引:18
作者
Beleznay, F
Foreman, M
机构
[1] EOTVOS LORAND UNIV, BUDAPEST, HUNGARY
[2] UNIV CALIF IRVINE, IRVINE, CA 92715 USA
关键词
D O I
10.1017/S0143385700010129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the collection of measure-distal transformations is a complete co-analytic set and that the Furstenberg order is a Pi(1)(1)-norm. Various other results about skew products are also shown.
引用
收藏
页码:929 / 962
页数:34
相关论文
共 11 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
ANZAI H, 1951, OSAKA MATH J, V3, P83
[3]   THE COLLECTION OF DISTAL FLOWS IS NOT BOREL [J].
BELEZNAY, F ;
FOREMAN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (01) :203-239
[4]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[5]  
HALMOS P, 1944, ANN MATH, V2, P786
[6]   Approximation theories for measure preserving transformations [J].
Halmos, Paul R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1944, 55 (1-3) :1-18
[7]  
HALMOS PR, 1956, LECTURES ERGODIC THE
[8]  
Moschovakis Y.N., 1980, Studies in Logic and the Foundations of Mathematics, V100
[9]  
Parry W., 1967, TOPOLOGICAL DYNAMICS
[10]  
ROKHLIN V, 1948, DOKL AKAD NAUK SSSR+, V60, P349