Error inequalities for a generalized trapezoid rule

被引:16
作者
Ujevic, N [1 ]
机构
[1] Univ Split, Dept Math, Split 21000, Croatia
关键词
quadrature rule; generalization; numerical integration; error bounds;
D O I
10.1016/j.aml.2005.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized trapezoid rule is derived. Various error bounds for this rule are established. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 7 条
[1]  
Cerone P., 2000, Handbook of Analytic-Computational Methods in Applied Mathematics, P65
[2]  
Cruz-Uribe D., 2002, J INEQUAL PURE APPL, V3, P1
[3]   On Euler trapezoid formulae [J].
Dedic, L ;
Matic, M ;
Pecaric, J .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 123 (01) :37-62
[4]   A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means [J].
Dragomir, SS ;
Cerone, P ;
Roumeliotis, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (01) :19-25
[5]  
Roberts A. J., 2004, ANZIAM J, V45, pE41
[6]   A generalization of Ostrowski's inequality and applications in numerical integration [J].
Ujevic, N .
APPLIED MATHEMATICS LETTERS, 2004, 17 (02) :133-137
[7]   New bounds for the first inequality of Ostrowski-Gruss type and applications [J].
Ujevic, N .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (2-3) :421-427