A Self-Powered Piezoelectric Energy Harvesting Interface with Wide Input Range in 65 nm CMOS Process

被引:1
|
作者
Liu, Lianxi [1 ,2 ]
Pang, Yanbo [1 ]
Yuan, Wenzhi [1 ]
Mu, Junchao [1 ]
机构
[1] Xidian Univ, Microelect Sch, Xian, Shaanxi, Peoples R China
[2] Xidian Univ, Key Lab Wide Band Gap Semicond Mat & Devices, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Charge pump rectifier; Intermittent power management unit; Piezoelectric energy harvesting; Ultra-low power; Unbalanced-biased; UNBALANCED-BIASED COMPARATORS; RECTIFIER;
D O I
10.1080/03772063.2017.1375439
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A self-powered piezoelectric energy harvesting interface circuit (PEHIC) with wide input range and good performance is presented in this paper. The proposed PEHIC consists of a two-stage active charge pump rectifier and an ultra-low power intermittent power management unit (IPMU). Active diodes based on unbalanced-biased comparators improve the reverse leakage current problem that conventional active diodes faced. By limiting the output voltage between 1.2 and 0.8 V, the IPMU working in intermittent mode can provide an expanded input range and ensure that the interface circuit has a large transient output power. Implemented in a 65 nm standard complementary metal oxide semiconductor (CMOS) technology, the PEHIC has been simulated and verified. Simulation results show that an AC signal with amplitude ranging from 0.32 to 1.5 V and frequencies of 20 Hz-3 kHz can be rectified. The maximum output current is as large as 5 mA. The peak power conversion efficiency is up to 81% when the input voltage is 0.8 V at 200 Hz. The PEHIC can be self-powered without the need for additional power supply.
引用
收藏
页码:753 / 763
页数:11
相关论文
共 50 条
  • [31] Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems
    Liang, Junrui
    Liao, Wei-Hsin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (04) : 1950 - 1960
  • [32] Energy harvesting for self-powered nanosystems
    Zhong Lin Wang
    Nano Research, 2008, 1 : 1 - 8
  • [33] Energy Harvesting for Self-Powered Nanosystems
    Wang, Zhong Lin
    NANO RESEARCH, 2008, 1 (01) : 1 - 8
  • [34] A self-powered extensible P-SSHI array interface circuit with thermoelectric energy assistance for piezoelectric energy harvesting
    Wang, Yike
    Qi, Yuyao
    Wang, Xiudeng
    Xia, Yinshui
    MICROELECTRONICS JOURNAL, 2023, 140
  • [35] A Self-Powered Interface Circuit for Simultaneous Piezoelectric and Electromagnetic Energy Extraction
    Jia, Shengyao
    Zeng, Chuanjun
    Shi, Ge
    Xu, Jubing
    Li, Yuchan
    Xia, Huakang
    Xia, Yinshui
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (09) : 10640 - 10650
  • [36] Self-Powered SSDCI Array Interface for Multiple Piezoelectric Energy Harvesters
    Long, Zhihe
    Wang, Xiudeng
    Li, Pengyu
    Wang, Biao
    Zhang, Xingqi
    Chung, Henry Shu-Hung
    Yang, Zhengbao
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (08) : 9093 - 9104
  • [37] A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier
    Liu, Lianxi
    Pang, Yanbo
    Yuan, Wenzhi
    Zhu, Zhangming
    Yang, Yintang
    JOURNAL OF SEMICONDUCTORS, 2018, 39 (04)
  • [38] Low-Power Design of a Self-powered Piezoelectric Energy Harvesting System
    Jiang Bing
    Cao Kun
    Chen Lijuan
    Chen Hong
    Zhang Huaqing
    Wang Qiang
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 6937 - 6940
  • [39] Theoretical Assessment on Piezoelectric Energy Harvesting in Smart Self-powered Asphalt Pavements
    Yisheng Chen
    He Zhang
    Liwei Quan
    Zhicheng Zhang
    Chaofeng Lü
    Journal of Vibration Engineering & Technologies, 2018, 6 : 1 - 10
  • [40] A coplanar electrode operating mode for piezoelectric energy harvesting and self-powered sensing
    Hao, Jian
    Liu, Ping
    Gao, Guanglong
    Gao, Qingguo
    Yang, Jianjun
    Liu, Liming
    APPLIED PHYSICS LETTERS, 2025, 126 (08)