Local and semilocal Poincare inequalities on metric spaces

被引:18
|
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 119卷
关键词
Density of Lipschitz functions; Lebesgue point; Local doubling; Metric measure space; Poincare inequality; Quasicontinuity; NEWTON-SOBOLEV FUNCTIONS; P-HARMONIC FUNCTIONS; LIPSCHITZ FUNCTIONS; POTENTIAL-THEORY; LEBESGUE POINTS; UNBOUNDED SETS; R-N; PROPERTY; QUASICONTINUITY; EQUIVALENCE;
D O I
10.1016/j.matpur.2018.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several local versions of the doubling condition and Poincare inequalities on metric measure spaces. Our first result is that in proper connected spaces, the weakest local assumptions self-improve to semilocal ones, i.e. holding within every ball. We then study various geometrical and analytical consequences of such local assumptions, such as local quasiconvexity, self-improvement of Poincare inequalities, existence of Lebesgue points, density of Lipschitz functions and quasicontinuity of Sobolev functions. It turns out that local versions of these properties hold under local assumptions, even though they are not always straightforward. We also conclude that many qualitative, as well as quantitative, properties of p-harmonic functions on metric spaces can be proved in various forms under such local assumptions, with the main exception being the Liouville theorem, which fails without global assumptions. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:158 / 192
页数:35
相关论文
共 50 条
  • [31] The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces
    Bjorn, Anders
    Bjorn, Jana
    Latvala, Visa
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (01): : 59 - 83
  • [32] Continuous dependence on obstacles for the double obstacle problem on metric spaces
    Farnana, Zohra
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 2819 - 2830
  • [33] Poincare Inequalities on Graphs
    Levi, M.
    Santagati, F.
    Tabacco, A.
    Vallarino, M.
    ANALYSIS MATHEMATICA, 2023,
  • [34] ON WEIGHTED POINCARE INEQUALITIES
    Dyda, Bartlomiej
    Kassmann, Moritz
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 721 - 726
  • [35] Improved Poincare inequalities
    Dolbeault, Jean
    Volzone, Bruno
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 5985 - 6001
  • [36] POINCARE INEQUALITIES ON GRAPHS
    Levi, M.
    Santagati, F.
    Tabacco, A.
    Vallarino, M.
    ANALYSIS MATHEMATICA, 2023, 49 (02) : 529 - 544
  • [37] On Trudinger-type inequalities in Musielak-Orlicz-Morrey spaces of an integral form over metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4): : 377 - 400
  • [38] Prime ends for domains in metric spaces
    Adamowicz, Tomasz
    Bjorn, Anders
    Bjorn, Jana
    Shanmugalingam, Nageswari
    ADVANCES IN MATHEMATICS, 2013, 238 : 459 - 505
  • [39] THE DOUBLE OBSTACLE PROBLEM ON METRIC SPACES
    Farnana, Zohra
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (01) : 261 - 277
  • [40] Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces
    Bjorn, Anders
    Bjorn, Jana
    Parviainen, Mikko
    REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) : 147 - 174