We show that a large number of equations are preserved by Dedekind-MacNeille completions when applied to subdirectly irreducible FL-algebras/residuated lattices. These equations are identified in a systematic way, based on proof-theoretic ideas and techniques in substructural logics. It follows that many varieties of Heyting algebras and FL-algebras admit completions.
机构:
New Mexico State Univ, Dept Math Sci, Las Cruces, NM USA
New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USANew Mexico State Univ, Dept Math Sci, Las Cruces, NM USA
Bezhanishvili, Guram
Harding, John
论文数: 0引用数: 0
h-index: 0
机构:
New Mexico State Univ, Dept Math Sci, Las Cruces, NM USA
New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USANew Mexico State Univ, Dept Math Sci, Las Cruces, NM USA
Harding, John
Ilin, Julia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Inst Logic, Language & Computat, NL-1090 GE Amsterdam, Netherlands
Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, NetherlandsNew Mexico State Univ, Dept Math Sci, Las Cruces, NM USA
Ilin, Julia
Lauridsen, Frederik Mollerstrom
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Inst Logic, Language & Computat, NL-1090 GE Amsterdam, Netherlands
Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, NetherlandsNew Mexico State Univ, Dept Math Sci, Las Cruces, NM USA