Algebraic homology for real hyperelliptic and real projective ruled surfaces

被引:2
作者
Abánades, MA [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2001年 / 44卷 / 03期
关键词
D O I
10.4153/CMB-2001-025-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a reduced nonsingular quasiprojective scheme over R such that the set of real rational points X(R) is dense in X and compact. Then X(R) is a real algebraic variety. Denote by H-k(alg) (X(R), Z/2) the group of homology classes represented by Zariski closed k-dimensional subvarieties of X(R). In this note we show that H-l(alg) (X(R), Z/2) is a proper subgroup of H-l (X(R), Z/2) for a nonorientable hyperelliptic surface X. We also determine all possible groups H-l(alg) (X(R), Z/2) for a real ruled surface X in connection with the previously known description of all possible topological configurations of X.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 12 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Bochnak J., 1998, Ergeb. Math. Grenzgeb., V36
[3]  
BOCHNAK J, 1996, HOMOLOGY CLASSES REP
[4]  
BOCHNAK J, 1997, HOMOLOGY CLASSES REP, P7
[5]  
Borel A., 1961, Bull. Soc. Math. France, V89, P461
[6]  
Fulton W., 1984, INTERSECTION THEORY, V2
[7]  
Huisman J., 1992, Ph. D. Thesis
[8]  
Kucharz W, 1996, MATH NACHR, V180, P135
[9]   Algebraic cycles and topology of real Enriques surfaces [J].
Mangolte, F ;
Van Hamel, J .
COMPOSITIO MATHEMATICA, 1998, 110 (02) :215-237
[10]  
Mangolte F, 1997, MATH Z, V225, P559, DOI 10.1007/PL00004321